Parallel Computing Toolbox™ 4
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Parallel Computing Toolbox™ User’s Guide
© COPYRIGHT 2004-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 2004
March 2005
September 2005
November 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 14SP1+)
Revised for Version 1.0.1 (Release 14SP2)
Revised for Version 1.0.2 (Release 14SP3)
Revised for Version 2.0 (Release 14SP3+)
Revised for Version 2.0.1 (Release 2006a)
Revised for Version 3.0 (Release 2006b)
Revised for Version 3.1 (Release 2007a)
Revised for Version 3.2 (Release 2007b)
Revised for Version 3.3 (Release 2008a)
Revised for Version 4.0 (Release 2008b)
Revised for Version 4.1 (Release 2009a)
Revised for Version 4.2 (Release 2009b)

Getting Started

Product Overviewcciiiiiiiiuennnnn.. 1-2
Typical Use Casescciiiiiiiinnninnnnnn.. 1-3
Parallel for-Loops (parfor) 1-3
Batchdobs 1-4
LargeData Sets i, 14
Introduction to Parallel Solutions 1-5
Interactively Running a Loop in Parallel 1-5
Runninga Batchdob 1-7
Running a Batch Parallel Loop 1-8
Using Distributed Arrays, spmd, and Composites 1-10
Determining Product Installation and Versions 1-12

Parallel for-Loops (parfor)

2|

Getting Started with parfor 2-2
Introduction 2-2
Whento Useparfor, 2-3
Setting up MATLAB Resources Using matlabpool 2-3
Creating a parfor-Loopc.ciiiiiiininn... 2-4
Differences Between for-Loops and parfor-Loops 2-5
Reduction Assignmentscc0iiiiiia.. 2-6

Programming Considerations 2-7
MATLABPath 0. 2-7
Error Handling0 .. 2-7

Limitationst e 2-8

vi

Performance Considerationsc.c.ivuiiinnn.. 2-10
Compatibility with Earlier Versions of MATLAB

SoftWareiiiii i e 2-11
Advanced Topicsciiiiiiiiiin. 2-12
About Programming Notescccuvivv..... 2-12
Classification of Variables 2-12
Improving Performance 2-26

Single Program Multiple Data (spmd)

3

Using spmd Constructs 3-2
Introduction i i 3-2
WhentoUsespmd iiiiiiinnnn.. 3-2
Setting Up MATLAB Resources Using matlabpool 3-3
Defining an spmd Statement 3-4

Accessing Data with Composites 3-7
Introduction i i 3-7
Creating Composites in spmd Statements 3-7
Variable Persistence and Sequences of spmd 3-9
Creating Composites Outside spmd Statements 3-10

Distributing Arrays 3-12
Distributed Versus Codistributed Arrays 3-12
Creating Distributed Arraysccivuiieeeeo... 3-12
Creating Codistributed Arrayscovuuueeee.... 3-13

Programming Considerations 3-15
MATLABPath 3-15
Error Handling 3-15
Limitations0iuitin et 3-15

Contents

Interactive Parallel Computation with pmode

q |

Introduction i i, 4-2
Getting Started withpmode 4-3
Parallel Command Window 4-10
Running pmodeona Cluster 4-15
Plottinginpmode 4-16
Limitations and Unexpected Results 4-18
Using Graphicsinpmodec0uuiiiinnnnn. 4-18
Troubleshooting uu... 4-19
Connectivity Testingo, 4-19
Hostname Resolution 4-19
Socket Connectionscciiiieiiieennnnennn.. 4-19

Math with Codistributed Arrays

5

Array Types ...t e 5-2
Introduction 5-2
Nondistributed Arraysciiiiiieeennnnnnn. 5-2
Codistributed Arraysccuiiiiniiiininna.. 5-4

Working with Codistributed Arrays 5-5
How MATLAB Software Distributes Arrays 5-5
Creating a Codistributed Array 5-7
Local Arrayst e e 5-11
Obtaining Information About the Array 5-12
Changing the Dimension of Distribution 5-13
Restoring the Full Array 5-14

vii

viii

Contents

Indexing into a Codistributed Array 5-15
2-Dimensional Distribution 5-17

Using a for-Loop Over a Distributed Range

(for-drange) 5-21
Parallelizing a for-Loop 5-21
Codistributed Arrays in a for-drange Loop 5-22

Using MATLAB Functions on Codistributed Arrays ... 5-24

Programming Overview

6

Product Introduction 6-2
L0 =) T 1= 6-2
Toolbox and Server Components 6-3

Using Parallel Computing Toolbox Software 6-8
Example: Evaluating a Basic Function 6-8
Example: Programming a Basic Job with a Local

Scheduler it 6-8
Getting Help i, 6-10

Program Development Guidelines 6-12

Life Cycleofadob 6-14

Programming with User Configurations 6-16
Defining Configurations 6-16
Exporting and Importing Configurations 6-22
Validating Configurationsc.. ... 6-23
Applying Configurations in Client Code 6-25

Programming Tipsand Notes 6-28
Saving or Sending Objectscciiiiieeeeen... 6-28
Current Working Directory of a MATLAB Worker 6-28
Using clear functionsuiiiiiiinnnnnn. 6-29

Running Tasks That Call Simulink Software 6-29

Using the pause Function 6-29
Transmitting Large Amountsof Data 6-29
Interruptingadob 6-29
Speeding Upadob 6-30
Using the Parallel Profiler 6-31
Introduction 6-31
Collecting Parallel Profile Data 6-31
Viewing Parallel Profile Data 6-32
Troubleshooting and Debugging 6-42
Object Data Size Limitations 6-42
File Access and Permissionsccouuiiieeeo... 6-42
No Resultsor Faileddob 6-44
Connection Problems Between the Client and Job
Managerciiiiii e 6-45

Evaluating Functions in a Cluster

7

Evaluating Functions Synchronously 7-2
Scopeofdfeval i 7-2
Argumentsofdfeval 7-3
Example — Using dfeval 7-4

Evaluating Functions Asynchronously 7-8

Programming Distributed Jobs

8|

Using a Local Scheduler 8-2
Creating and Running Jobs with a Local Scheduler 8-2
Local Scheduler Behavior 8-6

ix

UsingadJdobManager vuuunnn. 8-8

Creating and Running Jobs with a Job Manager 8-8
Sharing Code 8-13
Managing Objects in the Job Manager 8-16
Using a Fully Supported Third-Party Scheduler 8-19
Creating and Running Jobs 8-19
Sharing Code 8-26
Managing Objectscc0iiiiiiiiinnnnn. 8-28
Using the Generic Scheduler Interface 8-31
L0 =) T 1= 8-31
MATLAB Client Submit Function 8-32
Example — Writing the Submit Function 8-36
MATLAB Worker Decode Function 8-37
Example — Writing the Decode Function 8-39
Example — Programming and Running a Job in the
Client ...t e e 8-40
Supplied Submit and Decode Functions 8-45
Managing Jobs 8-46
SUMMATY .ottt ittt ettt 8-49

Programming Parallel Jobs

2

Introduction 9-2
Using a Supported Scheduler 9-4
Schedulers and Conditions, 9-4
Coding the Task Function 9-4
Codinginthe Client00, 9-5
Using the Generic Scheduler Interface 9-8
Introduction00 9-8
Codinginthe Client 0o, 9-8
Further Notes on Parallel Jobs 9-11
Number of Tasks in a Paralleldob 9-11

X Contents

Avoiding Deadlock and Other Dependency Errors 9-11

Object Reference

10|

Data Objectsc.ciiiiiiii i, 10-2
Scheduler Objectsc0 .. 10-2
Job Objects i 10-3
Task Objectsc ittt 10-3
Worker Objects 10-3

Objects — Alphabetical List

Function Reference

12

Parallel Code Execution, 12-2
Parallel Code on a MATLAB Pool 12-2
Configuration, Input, and Output 12-2
Interactive Functions 12-3

Codistributed Arrays i, 12-3
Toolbox Functions, 12-3
Overloaded MATLAB Functions 12-4

Job and Task Programming 12-6

xi

xii

Contents

Job Creationc.c.iiiiiiii e 12-6

Job Management0iiiiiiiinnann. 12-7
Task Execution Information 12-8
Object Control i, 12-8
Interlab Communication Within a Parallel Job 12-9

Functions — Alphabetical List

13

Property Reference

14

Job Manager Properties 14-2
Scheduler Properties 14-3
Job Properties 14-5
Task Properties00 iiinnnn. 14-6
Worker Propertiesc0iiiiiiiiinnn.. 14-8

Properties — Alphabetical List

15

Glossary

Index

xiii

xiv Contents

Getting Started

® “Product Overview” on page 1-2
e “Typical Use Cases” on page 1-3
¢ “Introduction to Parallel Solutions” on page 1-5

¢ “Determining Product Installation and Versions” on page 1-12

1 Getting Started

1-2

Product Overview

Parallel Computing Toolbox™ software allows you to offload work from one
MATLAB® session (the client) to other MATLAB sessions, called workers.
You can use multiple workers to take advantage of parallel processing. You
can use a local worker to keep your MATLAB client session free for interactive
work, or with MATLAB® Distributed Computing Server™ you can take
advantage of another computer’s speed.

Parallel Computing Toolbox software allows you to run as many as eight
MATLAB workers on your local machine in addition to your MATLAB client
session. MATLAB Distributed Computing Server software allows you to
run as many MATLAB workers on a remote cluster of computers as your
licensing allows.

Typical Use Cases

Typical Use Cases

In this section...

“Parallel for-Loops (parfor)” on page 1-3
“Batch Jobs” on page 1-4
“Large Data Sets” on page 1-4

Parallel for-Loops (parfor)

Many applications involve multiple segments of code, some of which are
repetitive. Often you can use for-loops to solve these cases. The ability to
execute code in parallel, on one computer or on a cluster of computers, can
significantly improve performance for many use cases:

® Parameter sweep applications

= Many iterations — A sweep might take a long time because it comprises
many iterations. Each iteration by itself might not take long to execute,
but to complete thousands or millions of iterations in serial could take
a long time.

= Long iterations — A sweep might not have a lot of iterations, but each
iteration could take a long time to run.

Typically, the only difference between iterations is defined by different
input data. In these cases, the ability to run separate sweep iterations
simultaneously can improve performance. Evaluating such iterations in
parallel is an ideal way to sweep through large or multiple data sets. The
only restriction on parallel loops is that no iterations be allowed to depend
on any other iterations.

o Test suites with independent segments — For applications that run a
series of unrelated tasks, you can run these tasks simultaneously on
separate resources. You might not have used a for-loop for a case such as
this comprising distinctly different tasks, but a parfor-loop could offer an
appropriate solution.

Parallel Computing Toolbox software improves the performance of such loop

execution by allowing several MATLAB workers to execute individual loop
iterations simultaneously. For example, a loop of 100 iterations could run on

1-3

1 Getting Started

1-4

a cluster of 20 MATLAB workers, so that simultaneously, the workers each
execute only five iterations of the loop. You might not get quite 20 times
improvement in speed because of communications overhead and network
traffic, but the speedup should be significant. Even running local workers all
on the same machine as the client, you might see significant performance
improvement on a multicore/multiprocessor machine. So whether your loop
takes a long time to run because it has many iterations or because each
iteration takes a long time, you can improve your loop speed by distributing
iterations to MATLAB workers.

Batch Jobs

When working interactively in a MATLAB session, you can offload work to

a MATLAB worker session to run as a batch job. The command to perform
this job is asynchronous, which means that your client MATLAB session is
not blocked, and you can continue your own interactive session while the
MATLAB worker is busy evaluating your code. The MATLAB worker can run
either on the same machine as the client, or if using MATLAB Distributed
Computing Server, on a remote cluster machine.

Large Data Sets

If you have an array that is too large for your computer’s memory, it cannot
be easily handled in a single MATLAB session. Parallel Computing Toolbox
software allows you to distribute that array among multiple MATLAB
workers, so that each worker contains only a part of the array. Yet you can
operate on the entire array as a single entity. Each worker operates only

on its part of the array, and workers automatically transfer data between
themselves when necessary, as, for example, in matrix multiplication. A
large number of matrix operations and functions have been enhanced to work
directly with these arrays without further modification; see “Using MATLAB
Functions on Codistributed Arrays” on page 5-24 and “Using MATLAB
Constructor Functions” on page 5-10.

Introduction to Parallel Solutions

Introduction to Parallel Solutions

In this section...

“Interactively Running a Loop in Parallel” on page 1-5
“Running a Batch Job” on page 1-7
“Running a Batch Parallel Loop” on page 1-8

“Using Distributed Arrays, spmd, and Composites” on page 1-10

Interactively Running a Loop in Parallel

This section shows how to modify a simple for-loop so that it runs in parallel.
This loop does not have a lot of iterations, and it does not take long to execute,
but you can apply the principles to larger loops. For these simple examples,
you might not notice an increase in execution speed.

1 Suppose your code includes a loop to create a sine wave and plot the
waveform:

for i=1:1024

A(i) = sin(i*2*pi/1024);
end
plot(A)

2 To interactively run code that contains a parallel loop, you first open a
MATLAB pool. This reserves a collection of MATLAB worker sessions
to run your loop iterations. The MATLAB pool can consist of MATLAB
sessions running on your local machine or on a remote cluster:

matlabpool open local 3

3 With the MATLAB pool reserved, you can modify your code to run your loop
in parallel by using a parfor statement:

parfor i=1:1024

A(i) = sin(i*2*pi/1024);
end
plot(A)

1 Getting Started

1-6

The only difference in this loop is the keyword parfor instead of for.
After the loop runs, the results look the same as those generated from
the previous for-loop.

MATLAB®
workers

MATLAB®
client

R\
4\ 4\

Because the iterations run in parallel in other MATLAB sessions, each
iteration must be completely independent of all other iterations. The
worker calculating the value for A(100) might not be the same worker
calculating A(500). There is no guarantee of sequence, so A(900) might
be calculated before A(400). (The MATLAB Editor can help identify

some problems with parfor code that might not contain independent
iterations.) The only place where the values of all the elements of the array
A are available is in the MATLAB client, after the data returns from the
MATLAB workers and the loop completes.

4 When you are finished with your code, close the MATLAB pool and release
the workers:

matlabpool close

For more information on parfor-loops, see Chapter 2, “Parallel for-Loops
(parfor)”.

The examples in this section run on three local workers. With parallel
configurations, you can control how many workers run your loops, and
whether the workers are local or remote. For more information on parallel
configurations, see “Programming with User Configurations” on page 6-16.

Introduction to Parallel Solutions

Running a Batch Job

To offload work from your MATLAB session to another session, you can use
the batch command. This example uses the for-loop from the last section
inside an M-file script.

1 To create the script, type:
edit mywave
2 In the MATLAB Editor, enter the text of the for-loop:
for i=1:1024
A(i) = sin(i*2*pi/1024);

end

3 Save the file and close the Editor.

4 Use the batch command in the MATLAB Command Window to run your
script on a separate MATLAB worker:

job = batch('mywave')

MATLAB® MATLAB®
dlient worker

d 4

5 The batch command does not block MATLAB, so you must wait for the job
to finish before you can retrieve and view its results:

wait(job)

6 The load command transfers variables from the workspace of the worker to
the workspace of the client, where you can view the results:

load(job, 'A')
plot(A)

7 When the job is complete, permanently remove its data:

destroy(job)

1-7

1 Getting Started

Running a Batch Parallel Loop

You can combine the abilities to offload a job and run a parallel loop. In the
previous two examples, you modified a for-loop to make a parfor-loop, and
you submitted a script with a for-loop as a batch job. This example combines
the two to create a batch parfor-loop.

1 Open your script in the MATLAB Editor:

edit mywave

2 Modify the script so that the for statement is a parfor statement:

parfor i=1:1024
A(i) = sin(i*2*pi/1024);
end

3 Save the file and close the Editor.

4 Run the script in MATLAB with the batch command as before, but indicate
that the script should use a MATLAB pool for the parallel loop:

job = batch('mywave', 'matlabpool', 3)

This command specifies that three workers (in addition to the one running
the batch script) are to evaluate the loop iterations. Therefore, this example
uses a total of four local workers, including the one worker running the
batch script.

Introduction to Parallel Solutions

MATLAB® MATLAB®
dient workers

] batch ;
F - 5 Fi —

parfor

|
2 B

5 To view the results:

wait(job)
load(job, 'A')
plot(A)

The results look the same as before, however, there are two important
differences in execution:

¢ The work of defining the parfor-loop and accumulating its results are
offloaded to another MATLAB session (batch).

¢ The loop iterations are distributed from one MATLAB worker to another
set of workers running simultaneously (matlabpool and parfor), so the
loop might run faster than having only one worker execute it.

6 When the job is complete, permanently remove its data:

destroy(job)

1-9

1 Getting Started

1-10

Using Distributed Arrays, spmd, and Composites

Distributed Arrays

The workers in a MATLAB pool communicate with each other, so you can
distribute an array among the labs. Each lab contains part of the array, and
all the labs are aware of which portion of the array each lab has.

First, open the MATLAB pool:

matlabpool open % Use default parallel configuration

Use the distributed function to distribute an array among the labs:

M = magic(4) % a 4-by-4 magic square in the client workspace
MM = distributed (M)

Now MM is a distributed array, equivalent to M, and you can manipulate or
access its elements in the same way as any other array.

M2 = 2*MM; % M2 is also distributed, calculation performed on workers
X = M2(1,1) % x on the client is set to first element of M2

When you are finished and have no further need of data from the labs, you can
close the MATLAB pool. Data on the labs does not persist from one instance
of a MATLAB pool to another.

matlabpool close

Single Program Multiple Data

The single program multiple data (spmd) construct lets you define a block of
code that runs in parallel on all the labs (workers) in the MATLAB pool. The
spmd block can run on some or all the labs in the pool.

matlabpool % Use default parallel configuration

spmd % By default uses all labs in the pool
R = rand(4);

end

This code creates an individual 4-by-4 matrix, R, of random numbers on
each lab in the pool.

Introduction to Parallel Solutions

Composites

Following an spmd statement, in the client context, the values from the
block are accessible, even though the data is actually stored on the labs. On
the client, these variables are called Composite objects. Each element of a
composite is a symbol referencing the value (data) on a lab in the pool. Note
that because a variable might not be defined on every lab, a Composite might
have undefined elements.

Continuing with the example from above, on the client, the Composite R has
one element for each lab:

X = R{3}; % Set X to the value of R from lab 3.

The line above retrieves the data from lab 3 to assign the value of X. The
following code sends data to lab 3:

X =X+ 2;
R{3} = X; % Send the value of X from the client to lab 3.

If the MATLAB pool remains open between spmd statements and the same
labs are used, the data on each lab persists from one spmd statement to
another.

spmd
R = R + labindex % Use values of R from previous spmd.
end

A typical use case for spmd is to run the same code on a number of labs, each
of which accesses a different set of data. For example:

spmd
INP
RES

load(['somedatafile' num2str(labindex) '.mat']);
somefun (INP)

end

Then the values of RES on the labs are accessible from the client as RES{1}
from lab 1, RES{2} from lab 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell
array:

1-11

1 Getting Started

® AA{n} returns the values of AA from lab n.

® AA(n) returns a cell array of the content of AA from lab n.

When you are finished with all spmd execution and have no further need of
data from the labs, you can close the MATLAB pool.

matlabpool close

Although data persists on the labs from one spmd block to another as long as
the MATLAB pool remains open, data does not persist from one instance of
a MATLAB pool to another.

For more information about using distributed arrays, spmd, and Composites,
see Chapter 3, “Single Program Multiple Data (spmd)”.

Determining Product Installation and Versions

1-12

To determine if Parallel Computing Toolbox software is installed on your
system, type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

If you want to run your applications on a cluster, see your system
administrator to verify that the version of Parallel Computing Toolbox you
are using is the same as the version of MATLAB Distributed Computing
Server installed on your cluster.

Parallel for-Loops (parfor)

® “Getting Started with parfor” on page 2-2
® “Programming Considerations” on page 2-7

e “Advanced Topics” on page 2-12

2 Parallel for-Loops (parfor)

2-2

Getting Started with parfor

In this section...

“Introduction” on page 2-2

“When to Use parfor” on page 2-3

“Setting up MATLAB Resources Using matlabpool” on page 2-3
“Creating a parfor-Loop” on page 2-4

“Differences Between for-Loops and parfor-Loops” on page 2-5

“Reduction Assignments” on page 2-6

Introduction

The basic concept of a parfor-loop in MATLAB software is the same as the
standard MATLAB for-loop: MATLAB executes a series of statements (the
loop body) over a range of values. Part of the parfor body is executed on the
MATLAB client (where the parfor is issued) and part is executed in parallel
on MATLAB workers. The necessary data on which parfor operates is sent
from the client to workers, where most of the computation happens, and the
results are sent back to the client and pieced together.

Because several MATLAB workers can be computing concurrently on the
same loop, a parfor-loop can provide significantly better performance than
its analogous for-loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB
workers evaluate iterations in no particular order, and independently of each
other. Because each iteration is independent, there is no guarantee that the
iterations are synchronized in any way, nor is there any need for this. If the
number of workers is equal to the number of loop iterations, each worker
performs one iteration of the loop. If there are more iterations than workers,
some workers perform more than one loop iteration; in this case, a worker
might receive multiple iterations at once to reduce communication time.

Getting Started with parfor

When to Use parfor

A parfor-loop is useful in situations where you need many loop iterations of
a simple calculation, such as a Monte Carlo simulation. parfor divides the
loop iterations into groups so that each worker executes some portion of the
total number of iterations. parfor-loops are also useful when you have loop
iterations that take a long time to execute, because the workers can execute
iterations simultaneously.

You cannot use a parfor-loop when an iteration in your loop depends on the
results of other iterations. Each iteration must be independent of all others.
Since there is a communications cost involved in a parfor-loop, there might
be no advantage to using one when you have only a small number of simple
calculations. The example of this section are only to illustrate the behavior

of parfor-loops, not necessarily to demonstrate the applications best suited
to them.

Setting up MATLAB Resources Using matlabpool

You use the function matlabpool to reserve a number of MATLAB workers
for executing a subsequent parfor-loop. Depending on your scheduler, the
workers might be running remotely on a cluster, or they might run locally

on your MATLAB client machine. You identify a scheduler and cluster by
selecting a parallel configuration. For a description of how to manage and use
configurations, see “Programming with User Configurations” on page 6-16.

To begin the examples of this section, allocate local MATLAB workers for
the evaluation of your loop iterations:

matlabpool

This command starts the number of MATLAB worker sessions defined by
the default parallel configuration. If the local configuration is your default
and does not specify the number of workers, this starts one worker per core
(maximum of eight) on your local MATLAB client machine.

Note If matlabpool is not running, a parfor-loop runs serially on the client
without regard for iteration sequence.

2-3

2 Parallel for-Loops (parfor)

2-4

Creating a parfor-Loop

The safest assumption about a parfor-loop is that each iteration of the
loop is evaluated by a different MATLAB worker. If you have a for-loop in
which all iterations are completely independent of each other, this loop is a
good candidate for a parfor-loop. Basically, if one iteration depends on the
results of another iteration, these iterations are not independent and cannot
be evaluated in parallel, so the loop does not lend itself easily to conversion
to a parfor-loop.

The following examples produce equivalent results, with a for-loop on the
left, and a parfor-loop on the right. Try typing each in your MATLAB
Command Window:

clear A clear A

for i = 1:8 parfor i = 1:8
A(1) = i A(1) = i

end end

A A

Notice that each element of A is equal to its index. The parfor-loop works
because each element depends only upon its iteration of the loop, and upon
no other iterations. for-loops that merely repeat such independent tasks are
1deally suited candidates for parfor-loops.

Getting Started with parfor

Differences Between for-Loops and parfor-Loops

Because parfor-loops are not quite the same as for-loops, there are special
behaviors to be aware of. As seen from the preceding example, when you
assign to an array variable (such as A in that example) inside the loop by
indexing with the loop variable, the elements of that array are available to
you after the loop, much the same as with a for-loop.

However, suppose you use a nonindexed variable inside the loop, or a variable
whose indexing does not depend on the loop variable i. Try these examples
and notice the values of d and i afterward:

clear A clear A

d=0; i=0; d=0; i=0;

for 1 = 1:4 parfor i = 1:4
d = i*2; d = i*2;
A(i) = d; A(i) = d;

end end

A A

d d

i i

Although the elements of A come out the same in both of these examples, the
value of d does not. In the for-loop above on the left, the iterations execute
in sequence, so afterward d has the value it held in the last iteration of the
loop. In the parfor-loop on the right, the iterations execute in parallel, not in
sequence, so it would be impossible to assign d a definitive value at the end
of the loop. This also applies to the loop variable, i. Therefore, parfor-loop
behavior is defined so that it does not affect the values d and i outside the
loop at all, and their values remain the same before and after the loop.

So, a parfor-loop requires that each iteration be independent of the other
iterations, and that all code that follows the parfor-loop not depend on the
loop iteration sequence.

2-5

2 Parallel for-Loops (parfor)

2-6

Reduction Assignments

The next two examples show parfor-loops using reduction assignments. A
reduction is an accumulation across iterations of a loop. The example on the
left uses x to accumulate a sum across 10 iterations of the loop. The example
on the right generates a concatenated array, 1:10. In both of these examples,
the execution order of the iterations on the workers does not matter: while
the workers calculate individual results, the client properly accumulates or
assembles the final loop result.

x = 0; x2 = [1;
parfor 1 = 1:10 n = 10;

X = X + ij parfor i = 1:n
end x2 = [x2, i];
X end

X2

If the loop iterations operate in random sequence, you might expect the
concatenation sequence in the example on the right to be nonconsecutive.
However, MATLAB recognizes the concatenation operation and yields
deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not
a valid parfor-loop because the value of an element of f in one iteration
depends on the values of other elements of f calculated in other iterations.

f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor n = 3:50
f(n) = f(n-1) + f(n-2);
end

When you are finished with your loop examples, clear your workspace and
close or release your pool of workers:

clear
matlabpool close

The following sections provide further information regarding programming
considerations and limitations for parfor-loops.

Programming Considerations

Programming Considerations

In this section...

“MATLAB Path” on page 2-7
“Error Handling” on page 2-7
“Limitations” on page 2-8

“Performance Considerations” on page 2-10

“Compatibility with Earlier Versions of MATLAB Software” on page 2-11

MATLAB Path

All workers executing a parfor-loop must have the same MATLAB path
configuration as the client, so that they can execute any functions called in the
body of the loop. Therefore, whenever you use cd, addpath, or rmpath on the
client, it also executes on all the workers, if possible. For more information,
see the matlabpool reference page. When the workers are running on a
different platform than the client, use the function pctRunOnAll to properly
set the MATLAB path on all workers.

Error Handling

When an error occurs during the execution of a parfor-loop, all iterations
that are in progress are terminated, new ones are not initiated, and the loop
terminates.

Errors and warnings produced on workers are annotated with the worker ID
and displayed in the client’s Command Window in the order in which they
are received by the client MATLAB.

The behavior of lastwarn is unspecified at the end of the parfor if used
within the loop body.

2 Parallel for-Loops (parfor)

2-8

Limitations

Unambiguous Variable Names

You cannot have names in a parfor-loop that are ambiguous as to whether
they refer to a variable or function at the time the code is read. (See “Naming
Variables” in the MATLAB documentation.) For example, in the following
code, if f is not a function on the path when the code is read, nor clearly
defined as a variable in the code, f (5) could refer either to the fifth element of
the array f, or to the function f with an argument of 5.

parfor i=1:n
a = f(5);

end

Transparency

The body of a parfor-loop must be transparent, meaning that all references to
variables must be “visible” (i.e., they occur in the text of the program).

In the following example, because X is not visible as an input variable in the
parfor body (only the string 'X' is passed to eval), it does not get transferred
to the workers. As a result, MATLAB issues an error at run time:

X = 5;

parfor ii = 1:4
eval('X');

end

Similarly, you cannot clear variables from a worker’s workspace by executing
clear inside a parfor statement:

parfor ii= 1:4
<statements...>
clear('X') % cannot clear: transparency violation
<statements...>

end

Programming Considerations

As a workaround, you can free up most of the memory used by a variable by
setting its value to empty, presumably when it is no longer needed in your
parfor statement:

parfor ii= 1:4
<statements...>
X =11;
<statements...>
end

Examples of some other functions that violate transparency are evalc,
evalin, and assignin with the workspace argument specified as 'caller’;
save and load, unless the output of load is assigned.

MATLAB does successfully execute eval and evalc statements that appear in
functions called from the parfor body.

Nondistributable Functions

If you use a function that is not strictly computational in nature (e.g., input,
plot, keyboard) in a parfor-loop or in any function called by a parfor-loop,

the behavior of that function occurs on the worker. The results might include
hanging the worker process or having no visible effect at all.

Nested Functions

The body of a parfor-loop cannot make reference to a nested function.
However, it can call a nested function by means of a function handle.

Nested parfor-Loops

The body of a parfor-loop cannot contain another parfor-loop. However, it
can call a function that contains another parfor-loop.

Nested spmd Statements

The body of a parfor-loop cannot contain an spmd statement, and an spmd
statement cannot contain a parfor-loop.

Break and Return Statements
The body of a parfor-loop cannot contain break or return statements.

2-9

2 Parallel for-Loops (parfor)

2-10

Global and Persistent Variables

The body of a parfor-loop cannot contain global or persistent variable
declarations.

Performance Considerations

Slicing Arrays

If a variable is initialized before a parfor-loop, then used inside the
parfor-loop, it has to be passed to each MATLAB worker evaluating the loop
iterations. Only those variables used inside the loop are passed from the
client workspace. However, if all occurrences of the variable are indexed by
the loop variable, each worker receives only the part of the array it needs. For
more information, see “Where to Create Arrays” on page 2-26.

Local vs. Cluster Workers

Running your code on local workers might offer the convenience of testing
your application without requiring the use of cluster resources. However,
there are certain drawbacks or limitations with using local workers. Because
the transfer of data does not occur over the network, transfer behavior on local
workers might not be indicative of how it will typically occur over a network.
For more details, see “Optimizing on Local vs. Cluster Workers” on page 2-26.

Programming Considerations

Compatibility with Earlier Versions of MATLAB

Software

In versions of MATLAB prior to 7.5 (R2007b), the keyword parfor designated
a more limited style of parfor-loop than what is available in MATLAB 7.5
and later. This old style was intended for use with codistributed arrays inside
a parallel job, and has been replaced by a for-loop that uses drange to define
its range; see “Using a for-Loop Over a Distributed Range (for-drange)” on

page 5-21.

The past and current functionality of the parfor keyword is outlined in the

following table:

Functionality

Syntax Prior to
MATLAB 7.5

Current Syntax

Parallel loop for
codistributed
arrays inside a
parallel job

parfor i = range
loop body

end

for i = drange(range)
loop body

end

Parallel loop
for implicit
distribution of
work

Not Implemented

parfor i = range
loop body

end

2-11

2 Parallel for-Loops (parfor)

2-12

Advanced Topics

In this section...

“About Programming Notes” on page 2-12

“Classification of Variables” on page 2-12

“Improving Performance” on page 2-26

About Programming Notes

This section presents guidelines and restrictions in shaded boxes like the one
shown below. Those labeled as Required result in an error if your parfor
code does not adhere to them. MATLAB software catches some of these errors
at the time it reads the code, and others when it executes the code. These are
referred to here as static and dynamic errors, respectively, and are labeled as
Required (static) or Required (dynamic). Guidelines that do not cause
errors are labeled as Recommended. You can use M-Lint to help make your
parfor-loops comply with these guidelines.

Required (static): Description of the guideline or restriction

Classification of Variables

® “Overview” on page 2-12

e “Loop Variable” on page 2-13

e “Sliced Variables” on page 2-14

e “Broadcast Variables” on page 2-17
e “Reduction Variables” on page 2-17
* “Temporary Variables” on page 2-24

Overview

When a name in a parfor-loop is recognized as referring to a variable, it is
classified into one of the following categories. A parfor-loop generates an

Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification | Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or

reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

= 0;
pi:
= 0;
= rand(l,10):
parfor i = 1:10

H om O o
]

temporary variable ——— & = i: <«———— loop variable

. . 2 = 2+i: sliced input variable
reduction variable) .
e bii) = rii);
sliced output variable if i <= = <«——— broadcast variable
d = Z2%a;
end

Loop Variable

enc

The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

2-13

2 Parallel for-Loops (parfor)

2-14

Required (static): Assignments to the loop variable are not allowed.

This example attempts to modify the value of the loop variable i in the body
of the loop, and thus is invalid:

parfor i = 1:n
i=1+1;
a(i) = 1i;

end

Sliced Variables

A sliced variable 1s one whose value can be broken up into segments, or slices,
which are then operated on separately by workers and by the MATLAB client.
Each iteration of the loop works on a different slice of the array. Using sliced
variables is important because this type of variable can reduce communication
between the client and workers. Only those slices needed by a worker are sent
to it, and only when it starts working on a particular range of indices.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:1length(A)
B(i) = f(A(1));
end

Characteristics of a Sliced Variable. A variable in a parfor-loop is sliced if
it has all of the following characteristics. A description of each characteristic
follows the list:

® Type of First-Level Indexing — The first level of indexing is either
parentheses, (), or braces, {}.

¢ Fixed Index Listing — Within the first-level parenthesis or braces, the list
of indices 1s the same for all occurrences of a given variable.

® Form of Indexing — Within the list of indices for the variable, exactly one
index involves the loop variable.

¢ Shape of Array — In assigning to a sliced variable, the right-hand side
of the assignment is not [] or '' (these operators indicate deletion of
elements).

Advanced Topics

Type of First-Level Indexing. For a sliced variable, the first level of indexing is
enclosed in either parentheses, (), or braces, {}.

This table lists the forms for the first level of indexing for arrays sliced and
not sliced.

Reference for Variable Not Reference for Sliced Variable
Sliced

A.X A(...)

A.(...) A{...}

After the first level, you can use any type of valid MATLAB indexing in the
second and further levels.

The variable A shown here on the left is not sliced; that shown on the right
is sliced:

A.q{i,12} A{i,12}.q

Fixed Index Listing. Within the first-level parentheses or braces of a sliced
variable’s indexing, the list of indices is the same for all occurrences of a
given variable.

The variable A shown here on the left is not sliced because A is indexed by i
and i+1 in different places; that shown on the right is sliced:

parfor i = 1:k parfor i = 1:k
B(:) = h(A(1), A(it1)); B(:) = f(A(1));
end C(:) = g(A{i});
end

The example above on the right shows some occurrences of a sliced variable
with first-level parenthesis indexing and with first-level brace indexing in the
same loop. This is acceptable.

Form of Indexing. Within the list of indices for a sliced variable, one of these
indices is of the form i, i+k, i-k, k+i, or k-1, where i is the loop variable and

2-15

2 Parallel for-Loops (parfor)

2-16

k is a constant or a simple (nonindexed) variable; and every other index is a
constant, a simple variable, colon, or end.

With i as the loop variable, the A variables shown here on the left are not
sliced; those on the right are sliced:

A(i+f(k),7,:,3) A(itk,j,:,3)
A(i,20:30,end) A(i,:,end)
A(i,:,s.field1) A(i,:,k)

When you use other variables along with the loop variable to index an array,
you cannot set these variables inside the loop. In effect, such variables are
constant over the execution of the entire parfor statement. You cannot
combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The
variable A shown here on either line is not sliced:

A(i,:) =
A(end + 1

(13
)

i;

The reason A is not sliced in either case is because changing the shape of a
sliced array would violate assumptions governing communication between
the client and workers.

Sliced Input and Output Variables. All sliced variables have the
characteristics of being input or output. A sliced variable can sometimes have
both characteristics. MATLAB transmits sliced input variables from the client
to the workers, and sliced output variables from workers back to the client. If
a variable is both input and output, it is transmitted in both directions.

Advanced Topics

In this parfor-loop, r is a sliced input variable and b 1s a sliced output
variable:

a = 0;
z = 0;
r rand(1,10);
parfor i = 1:10
a = 1ij;
zZ =2z + 1i;
b(i) = r(i);
end

However, if it is clear that in every iteration, every reference to an array
element is set before it is used, the variable is not a sliced input variable. In
this example, all the elements of A are set, and then only those fixed values
are used:

parfor i = 1:n
if someCondition

A(i) = 32;
else
A(i) = 17;
end
loop code that uses A(i)

end

Broadcast Variables

A broadcast variable is any variable other than the loop variable or a sliced
variable that is not affected by an assignment inside the loop. At the start of
a parfor-loop, the values of any broadcast variables are sent to all workers.
Although this type of variable can be useful or even essential, broadcast
variables that are large can cause a lot of communication between client and
workers. In some cases it might be more efficient to use temporary variables
for this purpose, creating and assigning them inside the loop.

Reduction Variables

MATLAB supports an important exception, called reductions, to the rule that
loop iterations must be independent. A reduction variable accumulates a

2-17

2 Parallel for-Loops (parfor)

value that depends on all the iterations together, but is independent of the
iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both side of an assignment statement, such as
any of the following, where expr is a MATLAB expression.

= X + expr X = expr + X

X =X - expr See Associativity in Reduction
Assignments in “Further
Considerations with Reduction
Variables” on page 2-20

X =X .* expr X = expr .* X

X = X * expr X = expr * X

X =X & expr X = expr & X

X =X | expr X = expr | X

X = [X, expr] X = [expr, X]

X = [X; expr] X = [expr; X]

X = {X, expr} X = {expr, X}

X = {X; expr} X = {expr; X}

X = min(X, expr) X = min(expr, X)

X = max (X, expr) X = max(expr, X)

X = union(X, expr) X = union(expr, X)

X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction
assignment, and, by definition, a reduction variable can appear only in
assignments of this type.

The following example shows a typical usage of a reduction variable X:

2-18

Advanced Topics

X = ... % Do some initialization of X

This loop is equivalent to the following, where each d (i) is calculated by
a different iteration:

X =X+d(1) + ... +d(n)

If the loop were a regular for-loop, the variable X in each iteration would get
its value either before entering the loop or from the previous iteration of the
loop. However, this concept does not apply to parfor-loops:

In a parfor-loop, the value of X is never transmitted from client to workers or
from worker to worker. Rather, additions of d (i) are done in each worker,
with i ranging over the subset of 1:n being performed on that worker. The
results are then transmitted back to the client, which adds the workers’
partial sums into X. Thus, workers do some of the additions, and the client
does the rest.

Basic Rules for Reduction Variables. The following requirements further
define the reduction assignments associated with a given variable.

Required (static): For any reduction variable, the same reduction function
or operation must be used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses
+1n one instance, and [,] in another. The parfor-loop on the right is valid:

parfor i = 1:n parfor i = 1:n
if A > 5%k if A > 5%k
A=A+ 1; A=A+ 1;
else else
A = [A, 4+i]; A=A+ 1+ 5%k;
end end
loop body continued loop body continued
end end

2-19

2 Parallel for-Loops (parfor)

Required (static): If the reduction assignment uses * or [,], then in
every reduction assignment for X, X must be consistently specified as the
first argument or consistently specified as the second.

The parfor-loop on the left below is not valid because the order of items in
the concatenation is not consistent throughout the loop. The parfor-loop
on the right is valid:

parfor i = 1:n parfor i = 1:n
if A > 5%k if A > 5%k
A= [A, 4+i]; A= [A, 4+i];
else else
A = [r(i), Al; A= 1[A, r(1)];
loop body continued loop body continued
end end

Further Considerations with Reduction Variables. This section provide
more detail about reduction assignments, associativity, commutativity, and
overloading of reduction functions.

Reduction Assignments. In addition to the specific forms of reduction
assignment listed in the table in “Reduction Variables” on page 2-17, the only
other (and more general) form of a reduction assignment is

X = f(X, expr) X = f(expr, X)

Required (static): f can be a function or a variable. If it is a variable, it
must not be affected by the parfor body (in other words, it is a broadcast
variable).

If f is a variable, then for all practical purposes its value at run time is
a function handle. However, this is not strictly required; as long as the
right-hand side can be evaluated, the resulting value is stored in X.

The parfor-loop below on the left will not execute correctly because the
statement f = @times causes f to be classified as a temporary variable and

2-20

Advanced Topics

therefore is cleared at the beginning of each iteration. The parfor on the
right is correct, because it does not assign to f inside the loop:

f = @(x,k)x * k; f = @(x,k)x * k;
parfor i = 1:n parfor i = 1:n
a = f(a,i); a = f(a,i);
loop body continued loop body continued
f = @times; % Affects f end
end

Note that the operators && and | | are not listed in the table in “Reduction
Variables” on page 2-17. Except for & and | |, all the matrix operations of
MATLAB have a corresponding function f, such that u op v is equivalent
to f(u,v). For && and | |, such a function cannot be written because u&&v
and u| |v might or might not evaluate v, but f(u,v) always evaluates v
before calling f. This is why && and | | are excluded from the table of allowed
reduction assignments for a parfor-loop.

Every reduction assignment has an associated function f. The properties of
f that ensure deterministic behavior of a parfor statement are discussed in
the following sections.

Associativity in Reduction Assignments. Concerning the function f as used in
the definition of a reduction variable, the following practice is recommended,
but does not generate an error if not adhered to. Therefore, it is up to you to

ensure that your code meets this recommendation.

Recommended: To get deterministic behavior of parfor-loops, the
reduction function f must be associative.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

The classification rules for variables, including reduction variables, are purely
syntactic. They cannot determine whether the f you have supplied is truly
associative or not. If it is not, different executions of the loop might result in
different answers. In other words, although parfor gives you the ability to

2-21

2 Parallel for-Loops (parfor)

2-22

declare that a function is associative, MATLAB does not detect misuse of
that ability.

Note While the addition of mathematical real numbers is associative,
addition of floating-point numbers is only approximately associative, and
different executions of this parfor statement might produce values of X with
different round-off errors. This is an unavoidable cost of parallelism.

For example, the statement on the left yields 1, while the statement on the
right returns 1 + eps:

(1 + eps/2) + eps/2 1 + (eps/2 + eps/2)

All the special cases listed in the table in “Reduction Variables” on page 2-17
have a corresponding function that is (perhaps approximately) associated
with it, with the exception of the minus operator (-). The assignment

X = X - expr can conceptually be written as X = X + (-expr), and
MATLAB achieves this effect for you. (Technically, the function associated
with this reduction assignment is plus, not minus.) However, the assignment
X = expr - Xcannot be written using an associative function, which explains
its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions,
including +, . *, min, and max, intersect, and union, are also commutative.
That is, they satisfy the following for all a and b:

f(a,b) = f(b,a)

Examples of noncommutative functions are * (because matrix multiplication is
not commutative for matrices in which both dimensions have size greater than
one), [,1,[;1, {,}, and {;}. Noncommutativity is the reason that consistency
in the order of arguments to these functions is required. As a practical matter,
a more efficient algorithm is possible when a function is commutative as well

as associative, and parfor is optimized to exploit commutativity.

Advanced Topics

Recommended: Except in the cases of *, [,1, [;1, {,}, and {;}, the
function f of a reduction assignment should be commutative. If f is not
commutative, different executions of the loop might result in different
answers.

Unless f is a known noncommutative built-in, it is assumed to be
commutative. There is currently no way to specify a user-defined,
noncommutative function in parfor.

Overloading in Reduction Assignments. Most associative functions f have an
identity element e, so that for any a, the following holds true:

f(e,a) = a = f(a,e)

Examples of identity elements for some functions are listed in this table.

Function Identity Element
* 0

* and .* 1

min Inf

max -Inf

[,1,[;], and union [

MATLAB uses the identity elements of reduction functions when it knows
them. So, in addition to associativity and commutativity, you should also keep
identity elements in mind when overloading these functions.

Recommended: An overload of +, *, .*, min, max, union, [,], or [;]
should be associative if it is used in a reduction assignment in a parfor.
The overload must treat the respective identity element given above (all
with class double) as an identity element.

Recommended: An overload of +, .*, min, max, union, or intersect
should be commutative.

2-23

2 Parallel for-Loops (parfor)

2-24

There is no way to specify the identity element for a function. In these cases,
the behavior of parfor is a little less efficient than it is for functions with a
known identity element, but the results are correct.

Similarly, because of the special treatment of X = X - expr, the following
1s recommended.

Recommended: An overload of the minus operator (-) should obey the
mathematical law that X - (y + z) is equivalent to (X - y) - z.

Temporary Variables

A temporary variable is any variable that is the target of a direct, nonindexed
assignment, but is not a reduction variable. In the following parfor-loop, a
and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10

a = 1ij; % Variable a is temporary
zZ =2z + 1i;
if 1 <=5
d = 2*a; % Variable d is temporary
end
end

In contrast to the behavior of a for-loop, MATLAB effectively clears any
temporary variables before each iteration of a parfor-loop. To help ensure
the independence of iterations, the values of temporary variables cannot

be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are
defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary
variable in the context of the parfor statement has no effect on a variable
with the same name that exists outside the loop, again in contrast to ordinary
for-loops.

Advanced Topics

Uninitialized Temporaries. Because temporary variables are cleared at
the beginning of every iteration, MATLAB can detect certain cases in which
any iteration through the loop uses the temporary variable before it is set
in that iteration. In this case, MATLAB issues a static error rather than a
run-time error, because there is little point in allowing execution to proceed
if a run-time error is guaranteed to occur. This kind of error often arises
because of confusion between for and parfor, especially regarding the rules
of classification of variables. For example, suppose you write

b = true;
parfor i = 1:n
if b && some_condition(i)
do_something(1i);
b = false;
end

end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment
inside the loop. Therefore it is cleared at the start of each iteration, so its use
in the condition of the if is guaranteed to be uninitialized. (If you change
parfor to for, the value of b assumes sequential execution of the loop, so that
do_something(i) is executed for only the lower values of i until b is set
false.)

Temporary Variables Intended as Reduction Variables. Another
common cause of uninitialized temporaries can arise when you have a
variable that you intended to be a reduction variable, but you use it elsewhere
in the loop, causing it technically to be classified as a temporary variable.
For example:

s = 0;
parfor i
s =s + f(i);

I}
-

if (s > whatever)

end
end

2-25

2 Parallel for-Loops (parfor)

2-26

If the only occurrences of s were the two in the first statement of the body, it
would be classified as a reduction variable. But in this example, s is not a
reduction variable because it has a use outside of reduction assignments in
the line s > whatever. Because s is the target of an assignment (in the first
statement), it is a temporary, so MATLAB issues an error about this fact, but
points out the possible connection with reduction.

Note that if you change parfor to for, the use of s outside the reduction
assignment relies on the iterations being performed in a particular order. The
point here is that in a parfor-loop, it matters that the loop “does not care”
about the value of a reduction variable as it goes along. It is only after the
loop that the reduction value becomes usable.

Improving Performance

Where to Create Arrays

With a parfor-loop, it might be faster to have each MATLAB worker create
its own arrays or portions of them in parallel, rather than to create a large
array in the client before the loop and send it out to all the workers separately.
Having each worker create its own copy of these arrays inside the loop saves
the time of transferring the data from client to workers, because all the
workers can be creating it at the same time. This might challenge your usual
practice to do as much variable initialization before a for-loop as possible, so
that you do not needlessly repeat it inside the loop.

Whether to create arrays before the parfor-loop or inside the parfor-loop
depends on the size of the arrays, the time needed to create them, whether
the workers need all or part of the arrays, the number of loop iterations
that each worker performs, and other factors. While many for-loops can be
directly converted to parfor-loops, even in these cases there might be other
issues involved in optimizing your code.

Optimizing on Local vs. Cluster Workers

With local workers, because all the MATLAB worker sessions are running
on the same machine, you might not see any performance improvement from
a parfor-loop regarding execution time. This can depend on many factors,
including how many processors and cores your machine has. You might
experiment to see if it is faster to create the arrays before the loop (as shown

Advanced Topics

on the left below), rather than have each worker create its own arrays inside
the loop (as shown on the right).

Try the following examples running a matlabpool locally, and notice the
difference in time execution for each loop. First open a local matlabpool:

matlabpool

Then enter the following examples. (If you are viewing this documentation in
the MATLAB help browser, highlight each segment of code below, right-click,
and select Evaluate Selection in the context menu to execute the block in
MATLAB. That way the time measurement will not include the time required
to paste or type.)

tic; tic;
n = 200; n = 200;
M = magic(n); parfor i = 1:n
R = rand(n); M = magic(n);
parfor i = 1:n R = rand(n);
A(i) = sum(M(i,:).*R(n+1-1,:)); A(i) = sum(M(i,:).*R(n+1-1,:));
end end
toc toc

Running on a remote cluster, you might find different behavior as workers
can simultaneously create their arrays, saving transfer time. Therefore, code
that is optimized for local workers might not be optimized for cluster workers,
and vice versa.

2-27

2 Parallel for-Loops (parfor)

2-28

Single Program Multiple
Data (spmd)

e “Using spmd Constructs” on page 3-2
e “Accessing Data with Composites” on page 3-7
e “Distributing Arrays” on page 3-12

® “Programming Considerations” on page 3-15

3 Single Program Multiple Data (spmd)

Using spmd Constructs

In this section...

“Introduction” on page 3-2
“When to Use spmd” on page 3-2
“Setting Up MATLAB Resources Using matlabpool” on page 3-3

“Defining an spmd Statement” on page 3-4

Introduction

The single program multiple data (spmd) language construct allows seamless
interleaving of serial and parallel programming. The spmd statement lets
you define a block of code to run simultaneously on multiple labs. Variables
assigned inside the spmd statement on the labs allow direct access to their
values from the client by reference via Composite objects.

This chapter explains some of the characteristics of spmd statements and
Composite objects.

When to Use spmd

The “single program” aspect of spmd means that the identical code runs on
multiple labs. You run one program in the MATLAB client, and those parts of
it labeled as spmd blocks run on the labs. When the spmd block is complete,
your program continues running in the client.

The “multiple data” aspect means that even though the spmd statement runs
identical code on all labs, each lab can have different, unique data for that
code. So multiple data sets can be accommodated by multiple labs.

Typical applications appropriate for spmd are those that require running
simultaneous execution of a program on multiple data sets, when
communication or synchronization is required between the labs. Some
common cases are:

® Programs that take a long time to execute — spmd lets several labs compute
solutions simultaneously.

Using spmd Constructs

® Programs operating on large data sets — spmd lets the data be distributed
to multiple labs.

Setting Up MATLAB Resources Using matlabpool

You use the function matlabpool to reserve a number of MATLAB labs
(workers) for executing a subsequent spmd statement or parfor-loop.
Depending on your scheduler, the labs might be running remotely on a
cluster, or they might run locally on your MATLAB client machine. You
identify a scheduler and cluster by selecting a parallel configuration. For a
description of how to manage and use configurations, see “Programming with
User Configurations” on page 6-16.

To begin the examples of this section, allocate local MATLAB labs for the
evaluation of your spmd statement:

matlabpool

This command starts the number of MATLAB worker sessions defined by
the default parallel configuration. If the local configuration is your default
and does not specify the number of workers, this starts one worker per core
(maximum of eight) on your local MATLAB client machine.

If you do not want to use default settings, you can specify in the matlabpool
statement which configuration or how many labs to use. For example, to use

only three labs with your default configuration, type:

matlabpool 3

To use a different configuration, type:

matlabpool MyConfigName

To inquire whether you currently have a MATLAB pool open, type:

matlabpool size

This command returns a value indicating the number of labs in the current
pool. If the command returns 0, there is currently no pool open.

3-3

3 Single Program Multiple Data (spmd)

3-4

Note If there is no MATLAB pool open, an spmd statement runs locally in the
MATLAB client without any parallel execution, provided you have Parallel
Computing Toolbox software installed. In other words, it runs in your client
session as though it were a single lab.

When you are finished using a MATLAB pool, close it with the command:

matlabpool close

Defining an spmd Statement
The general form of an spmd statement 1is:

spmd
<statements>
end

The block of code represented by <statements> executes in parallel
simultaneously on all labs in the MATLAB pool. If you want to limit the
execution to only a portion of these labs, specify exactly how many labs to
run on:

spmd (n)
<statements>
end

This statement requires that n labs run the spmd code. n must be less than
or equal to the number of labs in the open MATLAB pool. If the pool is large
enough, but n labs are not available, the statement waits until enough labs
are available. If n is O, the spmd statement uses no labs, and runs locally on
the client, the same as if there were not a pool currently open.

You can specify a range for the number of labs:

spmd (m, n)
<statements>
end

In this case, the spmd statement requires a minimum of m labs, and it uses
a maximum of n labs.

Using spmd Constructs

If it 1s important to control the number of labs that execute your spmd
statement, set the exact number in the configuration or with the spmd
statement, rather than using a range.

For example, create a random matrix on three labs:

matlabpool
spmd (3)
R = rand(4,4);
end
matlabpool close

Note All subsequent examples in this chapter assume that a MATLAB pool is
open and remains open between sequences of spmd statements.

Unlike a parfor-loop, the labs used for an spmd statement each have a unique
value for labindex. This lets you specify code to be run on only certain labs,
or to customize execution, usually for the purpose of accessing unique data.

For example, create different sized arrays depending on labindex:

spmd (3)
if labindex==
R = rand(9,9);
else
R = rand(4,4);
end
end

Load unique data on each lab according to labindex, and use the same
function on each lab to compute a result from the data:

spmd (3)
labdata = load(['datafile_' num2str(labindex) '.ascii'])
result = MyFunction(labdata)

end

The labs executing an spmd statement operate simultaneously and are
aware of each other. As with a parallel job, you are allowed to directly

3-5

3 Single Program Multiple Data (spmd)

3-6

control communications between the labs, transfer data between them, and
use codistributed arrays among them. For a list of toolbox functions that
facilitate these capabilities, see the Function Reference sections “Interlab
Communication Within a Parallel Job” on page 12-9 and “Codistributed
Arrays” on page 12-3.

For example, use a codistributed array in an spmd statement:

spmd (3)
RR = rand(30, codistributor());
end

Each lab has a 30-by-10 segment of the codistributed array RR. For
more information about codistributed arrays, see Chapter 5, “Math with
Codistributed Arrays”.

Accessing Data with Composites

Accessing Data with Composites

In this section...

“Introduction” on page 3-7
“Creating Composites in spmd Statements” on page 3-7
“Variable Persistence and Sequences of spmd” on page 3-9

“Creating Composites Outside spmd Statements” on page 3-10

Introduction

Composite objects in the MATLAB client session let you directly access data
values on the labs. Most often you assigned these variables within spmd
statements. In their display and usage, Composites resemble cell arrays.
There are two ways to create Composites:

¢ Using the Composite function on the client. Values assigned to the
Composite elements are stored on the labs.

¢ Defining variables on labs inside an spmd statement. After the spmd
statement, the stored values are accessible on the client as Composites.

Creating Composites in spmd Statements

When you define or assign values to variables inside an spmd statement, the
data values are stored on the labs.

After the spmd statement, those data values are accessible on the client as
Composites. Composite objects resemble cell arrays, and behave similarly.
On the client, a Composite has one element per lab. For example, suppose
you open a MATLAB pool of three local workers and run an spmd statement
on that pool:

matlabpool open local 3

spmd % Uses all 3 workers
MM = magic(labindex+2); % MM is a variable on each lab
end
MM{1} % In the client, MM is a Composite with one element per lab
8 1 6

3-7

3 Single Program Multiple Data (spmd)

3-8

3 5 7
4 9 2

MM{2}
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

A variable might not be defined on every lab. For the labs on which a variable
is not defined, the corresponding Composite element has no value. Trying to
read that element throws an error.

spmd
if labindex > 1
HH = rand(4)
end
end
HH
1: No data
2: class = double, size = [4 4]
3: class = double, size = [4 4]

You can also set values of Composite elements from the client. This causes a
transfer of data, storing the value on the appropriate lab even though it is not
executed within an spmd statement:

MM{3} = eye(4);

In this case, MM must already exist as a Composite, otherwise MATLAB
interprets it as a cell array.

Now when you do enter an spmd statement, the value of the variable MM on
lab 3 is as set:

spmd

if labindex == 3, MM, end
end
Lab 3:

MM =

Accessing Data with Composites

0 1 0 0
0 0 1 0
0 0 0 1

Data transfers from lab to client when you explicitly assign a variable in the
client workspace using a Composite element:

M = MM{1} % Transfer data from lab 1 to variable M on the client

8 1 6
3 5 7
4 9 2

Assigning an entire Composite to another Composite does not cause a data
transfer. Instead, the client merely duplicates the Composite as a reference to
the appropriate data stored on the labs:

NN = MM % Set entire Composite equal to another, without transfer

However, accessing a Composite’s elements to assign values to other
Composites does result in a transfer of data from the labs to the client, even
if the assignment then goes to the same lab. In this case, NN must already
exist as a Composite:

NN{1} = MM{1} % Transfer data to the client and then to lab

When finished, you can close the pool:

matlabpool close

Variable Persistence and Sequences of spmd

The values stored on the labs are retained between spmd statements. This
allows you to use multiple spmd statements in sequence, and continue to use
the same variables defined in previous spmd blocks.

The values are retained on the labs until the corresponding Composites are
cleared on the client, or until the MATLAB pool is closed. The following
example illustrates data value lifespan with spmd blocks, using a pool of four
workers:

3-9

3 Single Program Multiple Data (spmd)

3-10

matlabpool open local 4

spmd
AA = labindex; % Initial setting
end
AA(:) % Composite
[1]
[2]
[3]
[4]
spmd
AA = AA * 2; % Multiply existing value
end
AA(:) % Composite
[2]
[4]
[6]
[8]
clear AA % Clearing in client also clears on labs

spmd; AA = AA * 2; end % Generates error

matlabpool close

Creating Composites Outside spmd Statements

The Composite function creates Composite objects without using an spmd
statement. This might be useful to prepopulate values of variables on labs
before an spmd statement begins executing on those labs. Assume a MATLAB
pool is already open:

PP = Composite()

By default, this creates a Composite with an element for each lab in the
MATLAB pool. You can also create Composites on only a subset of the labs in
the pool. See the Composite reference page for more details. The elements of
the Composite can now be set as usual on the client, or as variables inside
an spmd statement. When you set an element of a Composite, the data is
immediately transferred to the appropriate lab:

for ii = 1:numel(PP)

Accessing Data with Composites

PP{ii} = ii;
end

3-11

3 Single Program Multiple Data (spmd)

Distributing Arrays

In this section...

“Distributed Versus Codistributed Arrays” on page 3-12
“Creating Distributed Arrays” on page 3-12
“Creating Codistributed Arrays” on page 3-13

Distributed Versus Codistributed Arrays

You can create a distributed array in the MATLAB client, and its data

1s stored on the labs of the open MATLAB pool. A distributed array is
distributed in one dimension, along the last nonsingleton dimension, and as
evenly as possible along that dimension among the labs. You cannot control
the details of distribution when creating a distributed array.

You can create a codistributed array by executing on the labs themselves,
either inside an spmd statement, in pmode, or inside a parallel job. When
creating a codistributed array, you can control all aspects of distribution,
including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of
perspective. Codistributed arrays are partitioned among the labs from which
you execute code to create or manipulate them. Distributed arrays are
partitioned among labs from the client with the open MATLAB pool. When
you create a distributed array in the client, you can access it as a codistributed
array inside an spmd statement. When you create a codistributed array in

an spmd statement, you can access is as a distributed array in the client.
Only spmd statements let you access the same array data from two different
perspectives.

Creating Distributed Arrays

You can create a distributed array in any of several ways:

e Use the distributed function to distribute an existing array from the
client workspace to the labs of an open MATLAB pool.

3-12

Distributing Arrays

e Use any of the overloaded distributed object methods to directly construct a
distributed array on the labs. This technique does not require that the array
already exists in the client, thereby reducing client workspace memory
requirements. These overloaded functions include distributed.eye,
distributed.rand, etc. For a full list, see the distributed object
reference page.

® (Create a codistributed array inside an spmd statement, then access it as a
distributed array outside the spmd statement. This lets you use distribution
schemes other than the default.

The first two of these techniques do not involve spmd in creating the array,
but you can see how spmd might be used to manipulate arrays created this
way. For example:

Create an array in the client workspace, then make it a distributed array:

mablabpool open local 2
W = ones(6,6);
W = distributed(W); % Distribute to the labs
spmd

T = W*2; % Calculation performed on labs, in parallel.

% T and W are both codistributed arrays here.
end
T % View results in client.
% T and W are both distributed arrays here.

matlabpool close

Creating Codistributed Arrays

You can create a codistributed array in any of several ways:

e Use the codistributed function inside an spmd statement, a parallel job,
or pmode to codistribute data already existing on the labs running that job.

e Use any of the overloaded codistributed object methods to directly construct
a codistributed array on the labs. This technique does not require that
the array already exists in the labs. These overloaded functions include
codistributed.eye, codistributed.rand, etc. For a full list, see the
codistributed object reference page.

3-13

3 Single Program Multiple Data (spmd)

® (Create a distributed array outside an spmd statement, then access it as
a codistributed array inside the spmd statement running on the same
MATLAB pool.

In this example, you create a codistributed array inside an spmd statement,
using a nondefault distribution scheme. First, define 1-D distribution along
the third dimension, with 4 parts on lab 1, and 12 parts on lab 2. Then create
a 3-by-3-by-16 array of zeros.

matlabpool open local 2
spmd
codist = codistributor1d(3, [4, 12]);
Z = codistributed.zeros(3, 3, 16, codist);
Z = Z + labindex;
end
Z % View results in client.
% Z is a distributed array here.
matlabpool close

For more details on codistributed arrays, see Chapter 5, “Math with

Codistributed Arrays”, and Chapter 4, “Interactive Parallel Computation
with pmode”.

3-14

Programming Considerations

Programming Considerations

In this section...
“MATLAB Path” on page 3-15
“Error Handling” on page 3-15

“Limitations” on page 3-15

MATLAB Path

All labs executing an spmd statement must have the same MATLAB path
configuration as the client, so that they can execute any functions called in
their common block of code. Therefore, whenever you use cd, addpath, or
rmpath on the client, it also executes on all the labs, if possible. For more
information, see the matlabpool reference page. When the labs are running
on a different platform than the client, use the function pctRunOnAll to
properly set the MATLAB path on all labs.

Error Handling

When an error occurs on a lab during the execution of an spmd statement, the
error is reported to the client. The client tries to interrupt execution on all
labs, and throws an error to the user.

Errors and warnings produced on labs are annotated with the lab ID and
displayed in the client’s Command Window in the order in which they are
received by the MATLAB client.

The behavior of lastwarn is unspecified at the end of an spmd if used within
its body.

Limitations

Transparency

The body of an spmd statement must be ¢iransparent, meaning that all
references to variables must be “visible” (i.e., they occur in the text of the
program).

3-15

3 Single Program Multiple Data (spmd)

3-16

In the following example, because X is not visible as an input variable in the
spmd body (only the string 'X' is passed to eval), it does not get transferred to
the labs. As a result, MATLAB issues an error at run time:

X = 5;

spmd
eval('X');

end

Similarly, you cannot clear variables from a worker’s workspace by executing
clear inside an spmd statement:

spmd; clear('X'); end

To clear a specific variable from a worker, clear its Composite from the client
workspace. Alternatively, you can free up most of the memory used by a
variable by setting its value to empty, presumably when it is no longer needed
in your spmd statement:

spmd
<statements....>
X=11;

end

Examples of some other functions that violate transparency are evalc,
evalin, and assignin with the workspace argument specified as 'caller’;
save and load, unless the output of load is assigned.

MATLAB does successfully execute eval and evalc statements that appear in
functions called from the spmd body.

Nested Functions

Inside a function, the body of an spmd statement cannot make any direct
reference to a nested function. However, it can call a nested function by
means of a variable defined as a function handle to the nested function.

Because the spmd body executes on workers, variables that are updated by
nested functions called inside an spmd statement do not get updated in the
workspace of the outer function.

Programming Considerations

Anonymous Functions

The body of an spmd statement cannot define an anonymous function.
However, it can reference an anonymous function by means of a function
handle.

Nested spmd Statements

The body of an spmd statement cannot contain another spmd. However, it
can call a function that contains another spmd statement. Be sure that your
MATLAB pool has enough labs to accommodate such expansion.

Nested parfor-Loops

The body of a parfor-loop cannot contain an spmd statement, and an spmd
statement cannot contain a parfor-loop.

Break and Return Statements
The body of an spmd statement cannot contain break or return statements.

Global and Persistent Variables

The body of an spmd statement cannot contain global or persistent variable
declarations.

3-17

3 Single Program Multiple Data (spmd)

3-18

Interactive Parallel
Computation with pmode

This chapter describes interactive pmode in the following sections:

® “Introduction” on page 4-2

® “Getting Started with pmode” on page 4-3

® “Parallel Command Window” on page 4-10

® “Running pmode on a Cluster” on page 4-15

® “Plotting in pmode” on page 4-16

e “Limitations and Unexpected Results” on page 4-18

® “Troubleshooting” on page 4-19

4 |nieractive Parallel Computation with pmode

4-2

Introduction

pmode lets you work interactively with a parallel job running simultaneously
on several labs. Commands you type at the pmode prompt in the Parallel
Command Window are executed on all labs at the same time. Each lab
executes the commands in its own workspace on its own variables.

The way the labs remain synchronized is that each lab becomes idle when it
completes a command or statement, waiting until all the labs working on this
job have completed the same statement. Only when all the labs are idle, do
they then proceed together to the next pmode command.

In contrast to spmd, pmode provides a desktop with a display for each lab
running the job, where you can enter commands, see results, access each lab’s
workspace, etc. What pmode does not let you do is to freely interleave serial
and parallel work, like spmd does. When you exit your pmode session, its

job 1s effectively destroyed, and all information and data on the labs is lost.
Starting another pmode session always begins from a clean state.

Getting Started with pmode

Getting Started with pmode

This example uses a local scheduler and runs the labs on your local MATLAB
client machine. It does not require an external cluster or scheduler. The
steps include the pmode prompt (P>>) for commands that you type in the
Parallel Command Window.

1 Start the pmode with the pmode command.

pmode start local 4

This starts four local labs, creates a parallel job to run on those labs, and
opens the Parallel Command Window.

=) Parallel Command Window

Fie Edt Detkiop Window Heb -
= B[40

You can control where the command history appears. For this exercise, the
position is set by clicking Window > History Position > Above Prompt,
but you can set it according to your own preference.

2 To illustrate that commands at the pmode prompt are executed on all labs,
ask for help on a function.

P>> help magic

4-3

4 |nieractive Parallel Computation with pmode

3 Set a variable at the pmode prompt. Notice that the value is set on all
the labs.

P>> x = pi

) Parallel Command Window

Fia Edt Detkion Window Help bl
= BB 0
[T~ [Lab 2
Bx>x = pi B>>x = pi
X = x =
3.1416 3.1416
Labiw Labd
Bx>x = pi Ex>x = pi
x = % =
3.1418 3.1416
x=pi
o

4 A variable does not necessarily have the same value on every lab. The
labindex function returns the ID particular to each lab working on this
parallel job. In this example, the variable x exists with a different value in
the workspace of each lab.

P>> x = labindex

5 Return the total number of labs working on the current parallel job with
the numlabs function.

P>> all = numlabs

4-4

Getting Started with pmode

6 Create a replicated array on all the labs.

P>> segment = [1 2; 3 4; 5 6]

| segment = [1 2; 3 4; 5 6]
258

4-5

4 |nieractive Parallel Computation with pmode

7 Assign a unique value to the array on each lab, dependent on the lab
number. With a different value on each lab, this is a variant array.

P>> segment = segment + 10*labindex

) Parallel Command Window

Fie Edt Dedkiop Window bl -
=] BB 0
[a1~ Loz~
P>> segment = segment + 10*labindex 2l| e>> segment = segment + 10*labindex =
seqment = seqment =
11 12 21 22
13 14 23 24
15 16 25 26
i~ Td~ =
B>> segment = segment + 10*labindex =l[p>> segment = t + 10%1 A
segment = segment =
31 3z 41 42
33 34 43 44
35 =17 45 46
segment = [1 2; 3 4; 5 6]
segment = segment + l0*labindex
B

8 Until this point in the example, the variant arrays are independent, other
than having the same name. Use the codistributed.build function to
aggregate the array segments into a coherent array, distributed among
the labs.

P>> codist = codistributorid(2, [2 2 2 2], [3 8])
P>> whole = codistributed.build(segment, codist)

This combines four separate 3-by-2 arrays into one 3-by-8 codistributed
array. The codistributor1d object indicates that the array is distributed
along its second dimension (columns), with 2 columns on each of the four
labs. On each lab, segment provided the data for the local portion of the
whole array.

9 Now, when you operate on the codistributed array whole, each lab handles
the calculations on only its portion, or segment, of the array, not the whole
array.

P>> whole = whole + 1000

4-6

Getting Started with pmode

10 Although the codistributed array allows for operations on its entirety, you

12

can use the getLocalPart function to access the portion of a codistributed
array on a particular lab.

P>> section = getLocalPart(whole)

Thus, section is now a variant array because it is different on each lab.

) Parailel Command Window IS [=] E3
Fle Edt Desiton Window bel ~
3] B &0
[T [z~
. = . |
section = section =
1011 1012 | 1021 1022
1013 1014 1023 1024
1015 1016 1025 1026
e ;lj_'l e ;lﬂ
(BT~ GHi=
| |
section = section =
1031 1032 J 1041 1042
1033 1034 1043 1044
1035 1036 1045 1046
| ;lzlﬂ — ;lzl
codist = codistributorid(2, [2 2 2 2], [3 B]); B
whole = codistributed.build(segment,codist)
whole = whole + 1000
section = getLocalPart (whole) 5|
P>>

If you need the entire array in one workspace, use the gather function.

P>> combined = gather(whole)

Notice, however, that this gathers the entire array into the workspaces of
all the labs. See the gather reference page for the syntax to gather the
array into the workspace of only one lab.

Because the labs ordinarily do not have displays, if you want to perform
any graphical tasks involving your data, such as plotting, you must do this
from the client workspace. Copy the array to the client workspace by typing
the following commands in the MATLAB (client) Command Window.

pmode lab2client combined 1

4-7

4 |nieractive Parallel Computation with pmode

4-8

13

Notice that combined is now a 3-by-8 array in the client workspace.

whos combined

To see the array, type its name.

combined

Many matrix functions that might be familiar can operate on codistributed
arrays. For example, the eye function creates an identity matrix. Now you
can create a codistributed identity matrix with the following commands

in the Parallel Command Window.

P>> distobj = codistributorid();
P>> I = eye(6, distobj)
P>> getLocalPart(I)

Calling the codistributorid function without arguments specifies the
default distribution, which is by columns in this case, distributed as evenly
as possible.

) Parallel Command Window M [=] 1
Fle Ede Desitto Window biep -
=] BEO0
Eir F
ans = | ans = |
1]]]
0 1 0 0
]] l 1]
] 0 J 0 1 J
0 0 0 0
] 0 0]
4] | ;':l Ll ;':I
[EL e~
ans = | ans = |
0 0
0 0
0 l 0
0 0
0 1
4 | | PE— o
A

distobj = codistributerld();

I = eye(6, distob])

getLocalPart (I) 5|
P>>

Getting Started with pmode

14 If you require distribution along a different dimension, you can use
the redistribute function. In this example, the argument 1 to

codistributorid specifies distribution of the array along the first
dimension (rows).

P>> distobj = codistributorid(1);
P>> I = redistribute(I, distobj)
P>> getLocalPart(I)

) Paralied Command Window

B[
Fle Ede Desacp Window Heo -
=] BE0
I My
ans = Hll e = =l
1 0 0 0 0 [0 0 1 0 0 0
] 1 0] 0 1]]] 0 1 0 1]
L4l | LIEI 1] | L|d
Lab3= [P
ans = 2lans = 5
0 0 0 0 1 0 0 0 0 0 0 1
L4 | _‘;1 4] |
distobj = codistributerld(l):; . &
I = redistribute(I, distobj) R
getLocalPart (I) EI
P>

15 Exit pmode and return to the regular MATLAB desktop.

P>> pmode exit

4-9

4 |nieractive Parallel Computation with pmode

Parallel Command Window

When you start pmode on your local client machine with the command

pmode start local 4

four labs start on your local machine and a parallel job is created to run on
them. The first time you run pmode with this configuration, you get a tiled

4-10

display of the four labs.

Clear all output

windows
Show commands W e Wedow e >
in lab output —™ =_ ==
T TR | ans = =
1 0] 0
0 1] 0
0 0 1 0
0 0] 1
Lab outputs o o J °o 0 J
in tiled ° ° o R o
) | L
arrangement = ' = :
ESnel= = | ans = =
0]
0]
0 0
0 0
1 0
0 1
4 | L'ﬂil% L,ﬂ
Command R distributorld () i
. s] = co ST UTor ;
history ———» I = eye(6, distobj)
Command _ getLocalPart (I) E'
line =22

Parallel Command Window

The Parallel Command Window offers much of the same functionality as the
MATLAB desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click,
you see the following context menu.

eSS SR TSR Wt

distobj = codistributor () ;

I = redistribute(I, distok
x> i
Select A

Undo Delete
Cut

Evaluale §ekectan F&
Shon Dulpudt

St Ence Stahe

Create U Fie

Dalets Sslackon
Cloaw Pl Cormenand Hiskory

You have several options for how to arrange the tiles showing your lab
outputs. Usually, you will choose an arrangement that depends on the format
of your data. For example, the data displayed until this point in this section,
as in the previous figure, is distributed by columns. It might be convenient to
arrange the tiles side by side.

_ Click tiling icon

. E - /Select layout

) =20

H
- HEER

4-11

4 |nieractive Parallel Computation with pmode

This arrangement results in the following figure, which might be more
convenient for viewing data distributed by columns.

Fle Edi Desktop Window Help B
=] E=l[=Na]
Lab1~ Lab2~ Lab3~ Labd~
localPart (I) = -l localPart(I) = 2 localPart (I) = -l localPart (I) = 4l

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 J 0 0 J 0 J 1 J
i _'I;I_<I_I _'I;I_'I_I _'I;I;I_I _'I;I

distobj = codistributor() ;
I = eye(6, distobj)
B> |

Alternatively, if the data is distributed by rows, you might want to stack the
lab tiles vertically. For the following figure, the data is reformatted with
the command

P>> distobj = codistributor('1d',1);
P>> I = redistribute(I, distobj)

When you rearrange the tiles, you see the following.

' 1o bl { comamarat Wirhom [[=]
e E8 Do s it -
B BE0
el

= a
localPart :Z‘]} 0 0 0 0 .
2 Ll

x|

[1]

3
localPart(I) =

o '] 1 [] o o
o 0 o 1 o o
= :I\
leparen = Select vertical
. ﬁ arrangement

localPart (I) =
0 0 0 L' 0 1

e Drag to adjust
distob) = codistributor('ld’ ,1}; t||e SiZeS

I = redistribute(I, distobj)
P

4-12

Parallel Command Window

You can control the relative positions of the command window and the lab
output. The following figure shows how to set the output to display beside the

input, rather than above it.

Fie Edi Desktop |Window Help ~
distok IleDuipu ’ =[m =Nl
Tab Dutput 3 RS
I=cey I -
distok localPart(I) =
I = re ChesAlDociments EEN P 1 0 0 0 0
ove From|
0 Command windom T Py i g & g 0 0 =
i pup
7 Parallel Cammand window Cth7 Hidden =
Lab2 =
localPart(I) = B
o} o} 1 o} o}
0 0 0 1 0 il
=
Tabav
1=l
localPart(I) =
0 0 0 0 1
]
=
Tabd~
=

localPart (I)
0 o] o] o] o]

P>

You can choose to view the lab outputs by tabs.

1. Select tabbed

display
) Parallel Command Window =] 3
File Edit Desktop ‘Window Help

Lab3 v
3. Select labs s« BU EEEE
Shown |n localPart (I) =
this tab U O U L
=
mebD)
distobj = codistributor () ;
I = eye(6, distobj)
2. Select tab distobj = codistributor('1ld',1);
I = redistribute (I, distobj)
P>

4-13

4 |nieractive Parallel Computation with pmode

You can have multiple labs send their output to the same tile or tab. This
allows you to have fewer tiles or tabs than labs.

Click tabbed output
=]
1/ Select only two tabs

In this case, the window provides shading to help distinguish the outputs
from the various labs.

) Parallel Command Windaw - [Of]
File Edit Desktop Window Help =
Lahszdv‘_l EEEEI
2 localPart (I) = I
0 0 1 0 0 0
. 0 0 0 1 0 0
Multiple labs
in same tab
3 localPart (1) =
0 0 0 0 il 0
[
I
Tz
distobj = codistributor('1d’,1); [
I = redistribute(I, distobj) j

P>>

4-14

Running pmode on a Cluster

Running pmode on a Cluster

When you run pmode on a cluster of labs, you are running a job that is

much like any other parallel job, except it is interactive. The cluster

can be heterogeneous, but with certain limitations described at
http://www.mathworks.com/products/parallel-computing/requirements.html;
carefully locate your scheduler on that page and note that pmode

sessions run as jobs described as “parallel applications that use

inter-worker communication.”

Many of the job’s properties are determined by a configuration. For more
details about creating and using configurations, see “Programming with User
Configurations” on page 6-16.

The general form of the command to start a pmode session is

pmode start <config-name> <num-labs>

where <config-name> is the name of the configuration you want to use,
and <num-1labs> is the number of labs you want to run the pmode job

on. If <num-labs> is omitted, the number of labs is determined by the
configuration. Coordinate with your system administrator when creating or
using a configuration.

If you omit <config-name>, pmode uses the default configuration (see the
defaultParallelConfig reference page).

For details on all the command options, see the pmode reference page.

4-15

http://www.mathworks.com/products/parallel-computing/requirements.html

4 |nieractive Parallel Computation with pmode

4-16

Plotting in pmode

Because the labs running a job in pmode are MATLAB sessions without
displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with codistributed arrays, one way to plot a
codistributed array is to follow these basic steps:

1 Use the gather function to collect the entire array into the workspace of
one lab.

2 Transfer the whole array from any lab to the MATLAB client with pmode
lab2client.

3 Plot the data from the client workspace.
The following example illustrates this technique.

Create a 1-by-100 codistributed array of 0s. With four labs, each lab has a
1-by-25 segment of the whole array.

P>> D = zeros(1,100,codistributorid())

: This lab stores D(1:25).

: This lab stores D(26:50).
: This lab stores D(51:75).
: This lab stores D(76:100).

A OOND =

Use a for-loop over the distributed range to populate the array so that it
contains a sine wave. Each lab does one-fourth of the array.

P>> for i = drange(1:100)

D(i) = sin(i*2*pi/100);
end;

Gather the array so that the whole array is contained in the workspace of
lab 1.

P>> P = gather(D, 1);

Plotting in pmode

Transfer the array from the workspace of lab 1 to the MATLAB client
workspace, then plot the array from the client. Note that both commands are
entered in the MATLAB (client) Command Window.

pmode lab2client P 1
plot(P)

This is not the only way to plot codistributed data. One alternative method,
especially useful when running noninteractive parallel jobs, is to plot the data
to a file, then view it from a later MATLAB session.

4-17

4 |nieractive Parallel Computation with pmode

4-18

Limitations and Unexpected Results

Using Graphics in pmode

Displaying a GUI

The labs that run the tasks of a parallel job are MATLAB sessions without
displays. As a result, these labs cannot display graphical tools and so you

cannot do things like plotting from within pmode. The general approach to
accomplish something graphical is to transfer the data into the workspace

of the MATLAB client using

pmode lab2client var lab

Then use the graphical tool on the MATLAB client.

Using Simulink Software

Because the labs running a pmode job do not have displays, you cannot use
Simulink® software to edit diagrams or to perform interactive simulation
from within pmode. If you type simulink at the pmode prompt, the Simulink
Library Browser opens in the background on the labs and is not visible.

You can use the sim command to perform noninteractive simulations in
parallel. If you edit your model in the MATLAB client outside of pmode, you
must save the model before accessing it in the labs via pmode; also, if the
labs had accessed the model previously, they must close and open the model
again to see the latest saved changes.

Troubleshooting

Troubleshooting

In this section...

“Connectivity Testing” on page 4-19

“Hostname Resolution” on page 4-19

“Socket Connections” on page 4-19

Connectivity Testing

For testing connectivity between the client machine and the machines of
your compute cluster, you can use Admin Center. For more information
about Admin Center, including how to start it and how to test connectivity,
see “Admin Center” in the MATLAB Distributed Computing Server
documentation.

Hostname Resolution

If a lab cannot resolve the hostname of the computer running the MATLAB
client, use pctconfig to change the hostname by which the client machine
advertises itself.

Socket Connections

If a lab cannot open a socket connection to the MATLAB client, try the
following:

e Use pctconfig to change the hostname by which the client machine
advertises itself.

e Make sure that firewalls are not preventing communication between the
lab and client machines.

e Use pctconfig to change the client’s pmodeport property. This determines
the port that the labs will use to contact the client in the next pmode
session.

4-19

4 |nieractive Parallel Computation with pmode

4-20

Math with Codistributed
Arrays

This chapter describes the distribution or partition of data across several labs,
and the functionality provided for operations on that data in spmd statements,
parallel jobs, and pmode. The sections are as follows.

* “Array Types” on page 5-2

e “Working with Codistributed Arrays” on page 5-5

e “Using a for-Loop Over a Distributed Range (for-drange)” on page 5-21

e “Using MATLAB Functions on Codistributed Arrays” on page 5-24

5 Math with Codistributed Arrays

Array Types

In this section...

“Introduction” on page 5-2

“Nondistributed Arrays” on page 5-2

“Codistributed Arrays” on page 5-4

Introduction

All built-in data types and data structures supported by MATLAB software
are also supported in the MATLAB parallel computing environment. This
includes arrays of any number of dimensions containing numeric, character,
logical values, cells, or structures; but not function handles or user-defined
objects. In addition to these basic building blocks, the MATLAB parallel
computing environment also offers different ¢ypes of arrays.

Nondistributed Arrays

When you create a nondistributed array, MATLAB constructs a separate array
in the workspace of each lab and assigns a common variable to them. Any
operation performed on that variable affects all individual arrays assigned

to it. If you display from lab 1 the value assigned to this variable, all labs
respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in
the workspace of each lab:

e “Replicated Arrays” on page 5-2

® “Variant Arrays” on page 5-3

* “Private Arrays” on page 5-4

Replicated Arrays

A replicated array resides in the workspaces of all labs, and its size and
content are identical on all labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display in spmd the value assigned
to this variable, all labs respond by showing the same array.

Array Types

spmd, A = magic(3), end

LAB 1 LAB 2 LAB 3 LAB 4

| | I
8 1 6 | 8 1 6 | 8 1 6 | 8 1 6
3 5 7 | 3 5 7 | 3 5 7 | 3 5 7
4 9 2 | 4 9 2 | 4 9 2 | 4 9 2

Variant Arrays

A variant array also resides in the workspaces of all labs, but its content
differs on one or more labs. When you create the array, MATLAB assigns
a different value to the same variable on all labs. If you display the value
assigned to this variable, all labs respond by showing their version of the
array.

spmd, A = magic(3) + labindex - 1, end

LAB 1 LAB 2 LAB 3 LAB 4

| | |
8 1 6 | 9 2 7 |10 3 8 |11 4 9
3 5 7 | 4 6 9 | 5 7 9 | 6 8 10
4 9 2 | 5 10 3 | 6 11 4 | 7 12 5

A replicated array can become a variant array when its value becomes unique
on each lab.

spmd
B
B

magic(3); %sreplicated on all labs
B + labindex; %now a variant array, different on each lab

end

5-3

5 Math with Codistributed Arrays

Private Arrays

A private array is defined on one or more, but not all labs. You could create
this array by using the lab index in a conditional statement, as shown here:

spmd
if labindex >= 3, A = magic(3) + labindex - 1, end

end
LAB 1 LAB 2 LAB 3 LAB 4

| | |

A is | A is | 10 3 8 | 11 4 9
undefined | undefined | 5 7 9 | 6 8 10
| 6 11 4 | 7 12 5

Codistributed Arrays

With replicated and variant arrays, the full content of the array is stored

in the workspace of each lab. Codistributed arrays, on the other hand, are
partitioned into segments, with each segment residing in the workspace of a
different lab. Each lab has its own array segment to work with. Reducing the
size of the array that each lab has to store and process means a more efficient
use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A over four labs. The
resulting array D is also 3-by-10 in size, but only a segment of the full array
resides on each lab.

spmd
A = [11:20; 21:30; 31:40];
D = codistributed(A);

getLocalPart(D)
end
LAB 1 LAB 2 LAB 3 LAB 4
I I |
11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40

For more details on using codistributed arrays, see “Working with
Codistributed Arrays” on page 5-5.

5-4

Working with Codistributed Arrays

Working with Codistributed Arrays

In this section...
“How MATLAB Software Distributes Arrays” on page 5-5

“Creating a Codistributed Array” on page 5-7

“Local Arrays” on page 5-11

“Obtaining Information About the Array” on page 5-12
“Changing the Dimension of Distribution” on page 5-13
“Restoring the Full Array” on page 5-14

“Indexing into a Codistributed Array” on page 5-15

“2-Dimensional Distribution” on page 5-17

How MATLAB Software Distributes Arrays

When you distribute an array to a number of labs, MATLAB software
partitions the array into segments and assigns one segment of the array to
each lab. You can partition a two-dimensional array horizontally, assigning
columns of the original array to the different labs, or vertically, by assigning
rows. An array with N dimensions can be partitioned along any of its N
dimensions. You choose which dimension of the array is to be partitioned by
specifying it in the array constructor command.

For example, to distribute an 80-by-1000 array to four labs, you can partition
it either by columns, giving each lab an 80-by-250 segment, or by rows, with
each lab getting a 20-by-1000 segment. If the array dimension does not divide
evenly over the number of labs, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns

it to variable A. In doing so, each lab creates an identical array in its own
workspace and assigns it to variable A, where A is local to that lab. The second
command distributes A, creating a single 80-by-1000 array D that spans all
four labs. lab 1 stores columns 1 through 250, lab 2 stores columns 251
through 500, and so on. The default distribution is by the last nonsingleton
dimension, thus, columns in this case of a 2-dimensional array.

5 Math with Codistributed Arrays

>
|

= zeros(80, 1000);
codistributed(A)

: This lab stores D(:,1:250).

: This lab stores D(:,251:500).

: This lab stores D(:,501:750).

: This lab stores D(:,751:1000).

A O =

Each lab has access to all segments of the array. Access to the local segment
is faster than to a remote segment, because the latter requires sending and
receiving data between labs and thus takes more time.

How MATLAB Displays a Codistributed Array

For each lab, the MATLAB Parallel Command Window displays information
about the codistributed array, the local portion, and the codistributor. For
example, an 8-by-8 identity matrix codistributed among four labs, with two

columns on each lab, displays like this:

>> spmd
IT = codistributed.eye(8)
end
Lab 1:
This lab stores II(:,1:2).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributorid]

Lab 2:
This lab stores II(:,3:4).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributorid]

Lab 3:
This lab stores II(:,5:6).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributorid]

Lab 4:
This lab stores II(:,7:8).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributorid]

To see the actual data in the local segment of the array, use the getLocalPart

function.

Working with Codistributed Arrays

How Much Is Distributed to Each Lab

In distributing an array of N rows, if N is evenly divisible by the number of
labs, MATLAB stores the same number of rows (N/numlabs) on each lab.
When this number is not evenly divisible by the number of labs, MATLAB
partitions the array as evenly as possible.

MATLAB provides a codistributor object properties called Dimension and
Partition that you can use to determine the exact distribution of an array.
See for more information on indexing with codistributed arrays.

Distribution of Other Data Types

You can distribute arrays of any MATLAB built-in data type, and also
numeric arrays that are complex or sparse, but not arrays of function handles
or object types.

Creating a Codistributed Array

You can create a codistributed array in any of the following ways:

e “Using MATLAB Constructor Functions” on page 5-10 — Use any of the
MATLAB constructor functions like rand or zeros with the a codistributor
object argument. These functions offer a quick means of constructing a
codistributed array of any size in just one step.

e “Partitioning a Larger Array” on page 5-7 — Start with a large array that
1s replicated on all labs, and partition it so that the pieces are distributed
across the labs. This is most useful when you have sufficient memory to
store the initial replicated array.

¢ “Building from Smaller Arrays” on page 5-9 — Start with smaller variant
or replicated arrays stored on each lab, and combine them so that each
array becomes a segment of a larger codistributed array. This method
reduces memory requiremenets as it lets you build a codistributed array
from smaller pieces.

Partitioning a Larger Array

If you have a large array already in memory that you want MATLAB
to process more quickly, you can partition it into smaller segments and
distribute these segments to all of the labs using the codistributed function.

5-7

5 Math with Codistributed Arrays

Each lab then has an array that is a fraction the size of the original, thus
reducing the time required to access the data that is local to each lab.

As a simple example, the following line of code creates a 4-by-8 replicated
matrix on each lab assigned to the variable A:

spmd, A = [11:18; 21:28; 31:38; 41:48], end

A:
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the codistributed function to construct a single 4-by-8
matrix D that is distributed along the second dimension of the array:

spmd
D = codistributed(A);
getLocalPart(D)
end
3: Local Part 4: Local Part

1: Local Part 2: Local Part

| | |
11 12| 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Arrays A and D are the same size (4-by-8). Array A exists in its full size on
each lab, while only a segment of array D exists on each lab.

spmd, size(A), size(D), end

Examining the variables in the client workspace, an array that is codistributed
among the labs inside an spmd statement, is a distributed array from the
perspective of the client outside the spmd statement. Variables that are not
codistributed inside the spmd, are Composites in the client outside the spmd.

whos
Name Size Bytes Class
A 1x4 613 Composite

5-8

Working with Codistributed Arrays

D

See the codistributed function reference page for syntax and usage

4x8

information.

649 distributed

Building from Smaller Arrays

The codistributed function is less useful for reducing the amount of memory
required to store data when you first construct the full array in one workspace
and then partition it into distributed segments. To save on memory, you can
construct the smaller pieces (local part) on each lab first, and then combine
them into a single array that is distributed across the labs.

This example creates a 4-by-250 variant array A on each of four labs and then
uses codistributor to distribute these segments across four labs, creating a
4-by-1000 codistributed array. Here is the variant array, A:

spmd

A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex -
end

LAB 1 | LAB 2 LAB 3

1 2 ... 250 | 251 252 ... 500 | 501 502 ... 750
251 252 ... 500 | 501 502 ... 750 | 751 752 ...1000
501 502 ... 750 | 751 752 ...1000 | 1001 1002 ...1250
751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 ...1500

Now combine these segments into an array that is distributed by the first
dimension (rows). The array is now 16-by-250, with a 4-by-250 segment

residing on each lab:

spmd
D

end

Lab

whos

1)

etc.
etc.
etc.
etc.

= codistributed.build (A, codistributorid(1,[4 4 4 4],[16 250]))

1:

This lab stores D(1:4,:).

LocalPart:
Codistributor:

[4x250 double]
[1x1 codistributorid]

5-9

5 Math with Codistributed Arrays

5-10

Name Size Bytes Class
A 1x4 613 Composite
D 16x250 649 distributed

You could also use replicated arrays in the same fashion, if you wanted

to create a codistributed array whose segments were all identical to start
with. See the codistributed function reference page for syntax and usage
information.

Using MATLAB Constructor Functions

MATLAB provides several array constructor functions that you can use

to build codistributed arrays of specific values, sizes, and classes. These
functions operate in the same way as their nondistributed counterparts in the
MATLAB language, except that they distribute the resultant array across the
labs using the specified codistributor object, dist.

Constructor Functions. The codistributed constructor functions are listed
here. Use the dist argument (created by the codistributor function:
dist=codistributor()) to specify over which dimension to distribute the
array. See the individual reference pages for these functions for further
syntax and usage information.

codistributed.cell(m, n, ..., dist)
codistributed.colon(a, d, b)
codistributed.eye(m, ..., classname, dist)
codistributed.false(m, n, ..., dist)
codistributed.Inf(m, n, ..., classname, dist)
codistributed.NaN(m, n, ..., classname, dist)
codistributed.ones(m, n, ..., classname, dist)
codistributed.rand(m, n, ..., dist)
codistributed.randn(m, n, ..., dist)

sparse(m, n, dist)

codistributed.speye(m, ..., dist)

codistributed.sprand(m, n, density, dist)
codistributed.sprandn(m, n, density, dist)
codistributed.true(m, n, ..., dist)
codistributed.zeros(m, n, ..., classname, dist)

Working with Codistributed Arrays

Local Arrays

That part of a codistributed array that resides on each lab is a piece of a
larger array. Each lab can work on its own segment of the common array, or
it can make a copy of that segment in a variant or private array of its own.
This local copy of a codistributed array segment is called a local array.

Creating Local Arrays from a Codistributed Array

The getLocalPart function copies the segments of a codistributed array to a
separate variant array. This example makes a local copy L of each segment of
codistributed array D. The size of L shows that it contains only the local part
of D for each lab. Suppose you distribute an array across four labs:

spmd (4)
A = [1:80; 81:160; 161:240];
D = codistributed(A);
size(D)
L = getLocalPart(D);
size(L)
end

returns on each lab:

3 80
3 20

Each lab recognizes that the codistributed array D is 3-by-80. However, notice
that the size of the local part, L, is 3-by-20 on each lab, because the 80 columns
of D are distributed over four labs.

Creating a Codistributed from Local Arrays

Use the codistributed function to perform the reverse operation. This
function, described in “Building from Smaller Arrays” on page 5-9, combines
the local variant arrays into a single array distributed along the specified
dimension.

Continuing the previous example, take the local variant arrays L and put
them together as segments to build a new codistributed array X.

spmd

5-11

5 Math with Codistributed Arrays

codist = codistributori1d(2,[20 20 20 20],[3 80]);
X = codistributed.build(L, codist);
size(X)

end

returns on each lab:

3 80

Obtaining Information About the Array

MATLAB offers several functions that provide information on any particular
array. In addition to these standard functions, there are also two functions
that are useful solely with codistributed arrays.

Determining Whether an Array Is Codistributed

The isa function returns a logical 1 (true) if the input array is codistributed,
and logical 0 (false) otherwise. The syntax is

spmd, TF = isa(D, 'codistributed'), end

where D is any MATLAB array.

Determining the Dimension of Distribution

The codistributor object determines how an array is partitioned and its
dimension of distribution. To access the codistributor of an array, use the
getCodistributor function. This returns two properties, Dimension and
Partition:

spmd, getCodistributor(X), end

Dimension: 2
Partition: [20 20 20 20]

The Dimension value of 2 means the array X is distributed by columns

(dimension 2); and the Partition value of [20 20 20 20] means that twenty
columns reside on each of the four labs.

5-12

Working with Codistributed Arrays

To get these properties programmatically, return the output of
getCodistributor to a variable, then use dot notation to access each
property:

spmd
C = getCodistributor(X);
part = C.Partition
dim = C.Dimension

end

Other Array Functions
Other functions that provide information about standard arrays also work

on codistributed arrays and use the same syntax.

¢ length — Returns the length of a specific dimension.

¢ ndims — Returns the number of dimensions.

® numel — Returns the number of elements in the array.

® size — Returns the size of each dimension.

¢ isa — Returns information about a number of array characteristics.

e is* — All functions that have names beginning with 'is', such as ischar
and issparse.

Changing the Dimension of Distribution

When constructing an array, you distribute the parts of the array along one
of the array’s dimensions. You can change the direction of this distribution
on an existing array using the redistribute function with a different
codistributor object.

Construct an 8-by-16 codistributed array D of random values distributed by
columns on four labs:

spmd
D = rand(8, 16, codistributor());

size(getLocalPart(D))
end

returns on each lab:

5-13

5 Math with Codistributed Arrays

8 4

Create a new codistributed array distributed by rows from an existing one
already distributed by columns:

spmd
X = redistribute(D, codistributorid(1));
size(getLocalPart (X))

end

returns on each lab:

2 16

Restoring the Full Array

You can restore a codistributed array to its undistributed form using the
gather function. gather takes the segments of an array that reside on
different labs and combines them into a replicated array on all labs, or into a
single array on one lab.

Distribute a 4-by-10 array to four labs along the second dimension:

spmd, A = [11:20; 21:30; 31:40; 41:50], end

A:
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, D = codistributed(A), end

Lab 1 | Lab 2 | Lab 3 | Lab 4
11 12 183 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 |34 3 36 | 37 38 | 39 40
41 42 43 | 44 45 46 | 47 48 | 49 50
| |

I
spmd, size(getLocalPart(D)), end

Lab 1:

4 3
Lab 2:

4 3

5-14

Working with Codistributed Arrays

Lab 3:

4 2
Lab 4:

4 2

Restore the undistributed segments to the full array form by gathering the
segments:

spmd, X = gather(D), end

X =
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, size(X), end
4 10

Indexing into a Codistributed Array

While indexing into a nondistributed array is fairly straightforward,
codistributed arrays require additional considerations. Each dimension of a
nondistributed array is indexed within a range of 1 to the final subscript,
which is represented in MATLAB by the end keyword. The length of any
dimension can be easily determined using either the size or length function.

With codistributed arrays, these values are not so easily obtained. For
example, the second segment of an array (that which resides in the workspace
of lab 2) has a starting index that depends on the array distribution. For a
200-by-1000 array with a default distribution by columns over four labs, the
starting index on lab 2 is 251. For a 1000-by-200 array also distributed by
columns, that same index would be 51. As for the ending index, this is not
given by using the end keyword, as end in this case refers to the end of the
entire array; that is, the last subscript of the final segment. The length of
each segment is also not given by using the length or size functions, as they
only return the length of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools
for indexing into nondistributed arrays. For codistributed arrays, MATLAB
provides a version of the colon operator, called codistributed.colon. This
actually is a function, not a symbolic operator like colon.

5-15

5 Math with Codistributed Arrays

5-16

Note When using arrays to index into codistributed arrays, you can use
only replicated or codistributed arrays for indexing. The toolbox does not
check to ensure that the index is replicated, as that would require global
communications. Therefore, the use of unsupported variants (such as
labindex) to index into codistributed arrays might create unexpected results.

Example: Find a Particular Element in a Codistributed Array
Suppose you have a row vector of 1 million elements, distributed among
several labs, and you want to locate its element number 225,000. That is, you
want to know what lab contains this element, and in what position in the
local part of the vector on that lab. The globalIndices function provides a
correlation between the local and global indexing of the codistributed array.

D = distributed.rand(1,1e6); %Distributed by columns
spmd
globallInd = globallIndices(D,2);
pos = find(globalInd == 225e3);
if ~isempty(pos)
fprintf(...
'Element is in position %d on lab %d.\n', pos, labindex);
end
end

If you run this code on a pool of four workers you get this result:

Lab 1:
Element is in position 225000 on lab 1.

If you run this code on a pool of five workers you get this result:

Lab 2:
Element is in position 25000 on lab 2.

Notice if you use a pool of a different size, the element ends up in a different
location on a different lab, but the same code can be used to locate the element.

Working with Codistributed Arrays

2-Dimensional Distribution
As an alternative to distributing by a single dimension of rows or columns,

you can distribute a matrix by blocks using '2dbc' or two-dimensional
block-cyclic distribution. Instead of segments that comprise a number of
complete rows or columns of the matrix, the segments of the codistributed
array are 2-dimensional square blocks.
For example, consider a simple 8-by-8 matrix with ascending element values.
You can create this array in an spmd statement, parallel job, or pmode. This
example uses pmode for a visual display.
P>> A = reshape(1:64, 8, 8)

The result is the replicated array:

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

Suppose you want to distribute this array among four labs, with a 4-by-4
block as the local part on each lab. In this case, the lab grid is a 2-by-2
arrangement of the labs, and the block size is a square of four elements on
a side (i.e., each block is a 4-by-4 square). With this information, you can
define the codistributor object:

P>> DIST = codistributor2dbc([2 2], 4)

Now you can use this codistributor object to distribute the original matrix:

5-17

5 Math with Codistributed Arrays

5-18

P>> AA = codistributed(A, DIST)

This distributes the array among the labs according to this scheme:

LAB 1 LAB 2
1 9 17 25 33 41 49 57

10 18 26 34 42 50 58
11 19 27 35 43 51 59
12 20 28 36 44 52 60

13 21 29 37 45 53 61
14 22 30 38 46 54 62
15 23 31 39 47 55 63

o N o |~ 0 N

16 24 32 40 48 56 64
LAB 3 LAB 4

If the lab grid does not perfectly overlay the dimensions of the codistributed
array, you can still use '2d' distribution, which is block cyclic. In this case,
you can imagine the lab grid being repeatedly overlaid in both dimensions
until all the original matrix elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block
size of 3 instead of 4, so that 3-by-3 square blocks are distributed among the
labs. The code looks like this:

P>> DIST = codistributor2dbc([2 2], 3)
P>> AA = codistributed(A, DIST)

The first “row” of the lab grid is distributed to lab 1 and lab 2, but that contains
only six of the eight columns of the original matrix. Therefore, the next two
columns are distributed to lab 1. This process continues until all columns in
the first rows are distributed. Then a similar process applies to the rows as
you proceed down the matrix, as shown in the following distribution scheme:

Working with Codistributed Arrays

| Original matrix

|
ik 9 17 | 25 33 41 49 57|
LAB 1 LAB 2 |
: 2 10 18 26 34 42 50 58 |
| |3 11 19 27 35 43 51 59 | a1 LAB 2
| |
| |4 12 20 | 28 36 44| |52 60|
LAB 3 LAB 4 |
: 5 13 21 29 37 45 53 61,
| |6 14 op 30 38 46 54 62: LAB 3 LAB 4
|
7 15 23 | 31 39 47| [55 63
ll8__16_ _24_| 82 __40_ 48| |56 _ 64,
LAB 1 LAB 2 LAB 1 LAB 2
LAB 3 LAB 4 LAB 3 LAB 4

The diagram above shows a scheme that requires four overlays of the lab
grid to accommodate the entire original matrix. The following pmode session
shows the code and resulting distribution of data to each of the labs:

5-19

5 Math with Codistributed Arrays

) Parallel Command Window [=]E3
File Edit Desktop Window Help ~
] B0 0
Lab 1+ lab 2 =
ans = ;I ans = ;I
1] 17 49 57 2 33 41
2 10 18 50 58 L 26 34 42
&) 11 19 31 59 27 35 43
) 15 23 55 63 31 39 47
8 16 24 =1 64 32 40 48
- -
4| | » 1] | 3
lab 3 = lab 4 =
ans = ;I ans = ;I
4 12 20 52 a0 28 36 44
5 13 21 53 6l i 28 37 45
) 14 22 54 62 30 38 46
- -
1| | » 1] | 3
L = reshape(1:62, 8, 8) =]
DIST = codistributorZ2dbe([2 2], 3)
AR = codistributed (A, DIST)
getLocalPart (AR) j
B>

The following points are worth noting:

e '2dbc' distribution might not offer any performance enhancement unless
the block size is at least a few dozen. The default block size is 64.
® The lab grid should be as close to a square as possible.

¢ Not all functions that are enhanced to work on '1d' codistributed arrays
work on '2dbc' codistributed arrays.

5-20

Using a for-Loop Over a Distributed Range (for-drange)

Using a for-Loop Over a Distributed Range (for-drange)

In this section...

“Parallelizing a for-Loop” on page 5-21

“Codistributed Arrays in a for-drange Loop” on page 5-22

Parallelizing a for-Loop

If you already have a coarse-grained application to perform, but you do
not want to bother with the overhead of defining jobs and tasks, you can
take advantage of the ease-of-use that pmode provides. Where an existing
program might take hours or days to process all its independent data sets,
you can shorten that time by distributing these independent computations
over your cluster.

For example, suppose you have the following serial code:

results = zeros(1, numDataSets);

for i = 1:numDataSets
load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end

plot(1:numDataSets, results);

save \\central\myResults\today.mat results

The following changes make this code operate in parallel, either interactively
in spmd or pmode, or in a parallel job:

results = zeros(1, numDataSets, codistributor());
for i = drange(1:numDataSets)
load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(1i);
end
res = gather(results, 1);
if labindex == 1
plot(1:numDataSets, res);
print -dtiff -r300 fig.tiff;
save \\central\myResults\today.mat res
end

5-21

5 Math with Codistributed Arrays

5-22

Note that the length of the for iteration and the length of the codistributed
array results need to match in order to index into results within a for
drange loop. This way, no communication is required between the labs. If
results was simply a replicated array, as it would have been when running
the original code in parallel, each lab would have assigned into its part of
results, leaving the remaining parts of results 0. At the end, results would
have been a variant, and without explicitly calling 1abSend and labReceive
or gcat, there would be no way to get the total results back to one (or all) labs.

When using the load function, you need to be careful that the data files are
accessible to all labs if necessary. The best practice is to use explicit paths to
files on a shared file system.

Correspondingly, when using the save function, you should be careful to only
have one lab save to a particular file (on a shared file system) at a time. Thus,
wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the labs, this example uses gather to
collect the data onto lab 1.

A lab cannot plot a visible figure, so the print function creates a viewable
file of the plot.

Codistributed Arrays in a for-drange Loop

When a for-loop over a distributed range is executed in a parallel job,
each lab performs its portion of the loop, so that the labs are all working
simultaneously. Because of this, no communication is allowed between the
labs while executing a for-drange loop. In particular, a lab has access only
to its partition of a codistributed array. Any calculations in such a loop that
require a lab to access portions of a codistributed array from another lab
will generate an error.

To illustrate this characteristic, you can try the following example, in which
one for loop works, but the other does not.

At the pmode prompt, create two codistributed arrays, one an identity matrix,
the other set to zeros, distributed across four labs.

D = eye(8, 8, codistributor())

Using a for-Loop Over a Distributed Range (for-drange)

E = zeros(8, 8, codistributor())

By default, these arrays are distributed by columns; that is, each of the
four labs contains two columns of each array. If you use these arrays in a
for-drange loop, any calculations must be self-contained within each lab. In
other words, you can only perform calculations that are limited within each
lab to the two columns of the arrays that the labs contain.

For example, suppose you want to set each column of array E to some multiple
of the corresponding column of array D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In
effect, while D is an identity matrix with 1s down the main diagonal, E has
the sequence 1, 2, 3, etc., down its main diagonal.

This works because each lab has access to the entire column of D and the
entire column of E necessary to perform the calculation, as each lab works
independently and simultaneously on two of the eight columns.

Suppose, however, that you attempt to set the values of the columns of E
according to different columns of D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j+1); end

This method fails, because when j is 2, you are trying to set the second
column of E using the third column of D. These columns are stored in different
labs, so an error occurs, indicating that communication between the labs is
not allowed.

5-23

5 Math with Codistributed Arrays

Using MATLAB Functions on Codistributed Arrays

Many functions in MATLAB software are enhanced or overloaded so that they
operate on codistributed arrays in much the same way that they operate on
arrays contained in a single workspace.

A few of these functions might exhibit certain limitations when operating on
a codistributed array. To see if any function has different behavior when
used with a codistributed array, type

help codistributed/functionname

For example,

help codistributed/normest

The following table lists the enhanced MATLAB functions that operate on
codistributed arrays.

Type of Function Function Names

Data functions cumprod, cumsum, fft, max, min, prod, sum

Data type functions cast, cell2mat, cell2struct, celldisp, cellfun,
char, double, fieldnames, int16, int32, int64,
int8, logical, num2cell, rmfield, single,
struct2cell, swapbytes, typecast, uint16,
uint32, uint64, uint8

Elementary and abs, acos, acosd, acosh, acot, acotd, acoth,
trigonometric acsc, acscd, acsch, angle, asec, asecd, asech,
functions asin, asind, asinh, atan, atan2, atand, atanh,

ceil, complex, conj, cos, cosd, cosh, cot, cotd,
coth, csc, cscd, csch, exp, expmi, fix, floor,
hypot, imag, isreal, log, 10og10, 1logip, 1og2, mod,
nextpow2, nthroot, pow2, real, reallog, realpow,
realsqrt, rem, round, sec, secd, sech, sign, sin
sind, sinh, sqrt, tan, tand, tanh

Elementary matrices | cat, diag, eps, find, isempty, isequal,
isequalwithequalnans, isfinite, isinf, isnan,
length, ndims, numel, size, tril, triu

5-24

Using MATLAB® Functions on Codistributed Arrays

Type of Function

Function Names

Matrix functions

chol, eig, lu, norm, normest, svd

Array operations

all, and (&), any, bitand, bitor, bitxor,
ctranspose ('), end, eq (==), ge (>=), gt (>),
horzcat ([]), 1divide (.\), le (<=), 1t (<),
minus (-), mldivide (\), mrdivide (/), mtimes (*),
ne (-=), not (~), or (]), plus (+), power (."),
rdivide (./), subsasgn, subsindex, subsref,
times (.*), transpose (. '), uminus (-), uplus (+),
vertcat ([; 1), xor

Sparse matrix
functions

full, issparse, nnz, nonzeros, nzmax, sparse,
spfun, spones

Special functions

dot

5-25

5 Math with Codistributed Arrays

5-26

Programming Overview

This chapter provides information you need for programming with Parallel
Computing Toolbox software. Further details of evaluating functions in
a cluster, programming distributed jobs, and programming parallel jobs
are covered in later chapters. This chapter describes features common to
programming all kinds of jobs. The sections are as follows.

¢ “Product Introduction” on page 6-2

¢ “Using Parallel Computing Toolbox Software” on page 6-8

® “Program Development Guidelines” on page 6-12

e “Life Cycle of a Job” on page 6-14

* “Programming with User Configurations” on page 6-16

® “Programming Tips and Notes” on page 6-28

e “Using the Parallel Profiler” on page 6-31
e “Troubleshooting and Debugging” on page 6-42

6 Programming Overview

Product Introduction

In this section...

“Overview” on page 6-2

“Toolbox and Server Components” on page 6-3

Overview

Parallel Computing Toolbox and MATLAB Distributed Computing Server
software let you solve computationally and data-intensive problems using
MATLAB and Simulink on multicore and multiprocessor computers. Parallel
processing constructs such as parallel for-loops and code blocks, distributed
arrays, parallel numerical algorithms, and message-passing functions let
you implement task-parallel and data-parallel algorithms at a high level

in MATLAB without programming for specific hardware and network
architectures.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks,
but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB.
The client uses Parallel Computing Toolbox software to perform the definition
of jobs and tasks. MATLAB Distributed Computing Server software is the
product that performs the execution of your job by evaluating each of its tasks
and returning the result to your client session.

The job manager is the part of the engine that coordinates the execution of
jobs and the evaluation of their tasks. The job manager distributes the tasks
for evaluation to the server’s individual MATLAB sessions called workers.
Use of the MathWorks™ job manager is optional; the distribution of tasks to
workers can also be performed by a third-party scheduler, such as Microsoft®
Windows HPC Server (including CCS) or Platform LSF® schedulers.

See the “Glossary” on page Glossary-1 for definitions of the parallel computing
terms used in this manual.

Product Introduction

MATLAB Worker

MATLAB Distributed
Computing Server

MATLAB Client Scheduler MATLAB Worker
Purallt.el or MATLAB Distributed
Computing JOb Monoger Computing Server
Toolbox

MATLAB Worker

MATLAB Distributed
Computing Server

Basic Parallel Computing Configuration

Toolbox and Server Components

e “Job Managers, Workers, and Clients” on page 6-3

® “Local Scheduler” on page 6-5

e “Third-Party Schedulers” on page 6-5

* “Components on Mixed Platforms or Heterogeneous Clusters” on page 6-7
* “mdce Service” on page 6-7

* “Components Represented in the Client” on page 6-7

Job Managers, Workers, and Clients

The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its
queue are promoted, demoted, canceled, or destroyed.

Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another
task. When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

6 Programming Overview

6-4

A MATLAB Distributed Computing Server software setup usually includes
many workers that can all execute tasks simultaneously, speeding up
execution of large MATLAB jobs. It is generally not important which worker
executes a specific task. The workers evaluate tasks one at a time, returning
the results to the job manager. The job manager then returns the results of
all the tasks in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.

Task
Job . Results
Client |4
All Results Schedu|er Task
or

Job Manager [*Rets

Job _

Client | _
— All Results fook
Results

Interactions of Parallel Computing Sessions

A large network might include several job managers as well as several
client sessions. Any client session can create, run, and access jobs on any
job manager, but a worker session is registered with and dedicated to only
one job manager at a time. The following figure shows a configuration with
multiple job managers.

Product Introduction

Cliont Scheduler @
Job M%rndger
" < —)
ient
Client -@
Scheduler @
. or 4.
Client Job Manager

Configuration with Multiple Clients and Job Managers

Local Scheduler

A feature of Parallel Computing Toolbox software is the ability to run a local
scheduler and up to eight workers on the client machine, so that you can run
distributed and parallel jobs without requiring a remote cluster or MATLAB
Distributed Computing Server software. In this case, all the processing
required for the client, scheduling, and task evaluation is performed on the
same computer. This gives you the opportunity to develop, test, and debug
your distributed or parallel application before running it on your cluster.

Third-Party Schedulers

As an alternative to using the MathWorks job manager, you can use a
third-party scheduler. This could be a Microsoft Windows HPC Server
(including CCS), Platform LSF scheduler, PBS Pro® scheduler, TORQUE
scheduler, mpiexec, or a generic scheduler.

Choosing Between a Third-Party Scheduler and Job Manager.
You should consider the following when deciding to use a scheduler or the

MathWorks job manager for distributing your tasks:

® Does your cluster already have a scheduler?

6-5

6 Programming Overview

6-6

If you already have a scheduler, you may be required to use it as a means
of controlling access to the cluster. Your existing scheduler might be just
as easy to use as a job manager, so there might be no need for the extra
administration involved.

Is the handling of parallel computing jobs the only cluster scheduling
management you need?

The MathWorks job manager is designed specifically for MathWorks
parallel computing applications. If other scheduling tasks are not needed, a
third-party scheduler might not offer any advantages.

Is there a file sharing configuration on your cluster already?

The MathWorks job manager can handle all file and data sharing
necessary for your parallel computing applications. This might be helpful
in configurations where shared access 1s limited.

Are you interested in batch mode or managed interactive processing?

When you use a job manager, worker processes usually remain running at
all times, dedicated to their job manager. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks,
and stopped when their tasks are complete. If tasks are small or take little
time, starting a worker for each one might involve too much overhead time.

Are there security concerns?

Your own scheduler may be configured to accommodate your particular
security requirements.

How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult
your MathWorks representative if you have questions about cluster size
and the job manager.

Who administers your cluster?

The person administering your cluster might have a preference for how
jobs are scheduled.

Do you need to monitor your job’s progress or access intermediate data?

A job run by the job manager supports events and callbacks, so that
particular functions can run as each job and task progresses from one state
to another.

Product Introduction

Components on Mixed Platforms or Heterogeneous Clusters

Parallel Computing Toolbox software and MATLAB Distributed

Computing Server software are supported on Windows®, UNIX®, and

Macintosh® operating systems. Mixed platforms are supported, so that

the clients, job managers, and workers do not have to be on the

same platform. The cluster can also be comprised of both 32-bit and

64-bit machines, so long as your data does not exceed the limitations

posed by the 32-bit systems. Other limitations are described at
http://www.mathworks.com/products/parallel-computing/requirements.html.

In a mixed-platform environment, system administrators should be sure to
follow the proper installation instructions for the local machine on which you
are installing the software.

mdce Service

If you are using the MathWorks job manager, every machine that hosts a
worker or job manager session must also run the mdce service.

The mdce service controls the worker and job manager sessions and recovers
them when their host machines crash. If a worker or job manager machine
crashes, when the mdce service starts up again (usually configured to start
at machine boot time), it automatically restarts the job manager and worker
sessions to resume their sessions from before the system crash. These
processes are covered more fully in the MATLAB Distributed Computing
Server System Administrator’s Guide.

Components Represented in the Client

A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary,
the client session can also access information about a worker session through
a worker object.

When you create a job in the client session, the job actually exists in the job
manager or in the scheduler’s data location. The client session has access to
the job through a job object. Likewise, tasks that you define for a job in the
client session exist in the job manager or in the scheduler’s data location, and
you access them through task objects.

http://www.mathworks.com/products/parallel-computing/requirements.html

6 Programming Overview

6-8

Using Parallel Computing Toolbox Software

In this section...

“Example: Evaluating a Basic Function” on page 6-8
“Example: Programming a Basic Job with a Local Scheduler” on page 6-8

“Getting Help” on page 6-10

Example: Evaluating a Basic Function

The dfeval function allows you to evaluate a function in a cluster of workers
without having to individually define jobs and tasks yourself. When you can
divide your job into similar tasks, using dfeval might be an appropriate
way to run your job. The following code uses a local scheduler on your client
computer for dfeval.

results = dfeval(@sum, {[1 1] [2 2] [3 3]}, 'Configuration', 'local')
results =

[2]

[4]

[6]

This example runs the job as three tasks in three separate MATLAB worker
sessions, reporting the results back to the session from which you ran dfeval.

For more information about dfeval and in what circumstances you can use it,
see Chapter 7, “Evaluating Functions in a Cluster”.

Example: Programming a Basic Job with a Local
Scheduler

In some situations, you might need to define the individual tasks of a job,
perhaps because they might evaluate different functions or have uniquely
structured arguments. To program a job like this, the typical Parallel
Computing Toolbox client session includes the steps shown in the following
example.

Using Parallel Computing Toolbox™ Software

This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task evaluates the sum function for an
input array.

1 Identify a scheduler. Use findResource to indicate that you are using the
local scheduler and create the object sched, which represents the scheduler.
(For more information, see “Find a Job Manager” on page 8-8 or “Creating
and Running Jobs” on page 8-19.)

sched = findResource('scheduler', ‘'type', 'local')

2 Create a job. Create job j on the scheduler. (For more information, see
“Create a Job” on page 8-10.)

j = createdob(sched)

3 Create three tasks within the job j. Each task evaluates the sum of the
array that is passed as an input argument. (For more information, see
“Create Tasks” on page 8-11.)

createTask(j, @sum, 1, {[1 11})
createTask(j, @sum, 1, {[2 2]})
createTask(j, @sum, 1, {[3 31})

4 Submit the job to the scheduler queue for evaluation. The scheduler then
distributes the job’s tasks to MATLAB workers that are available for
evaluating. The local scheduler actually starts a MATLAB worker session
for each task, up to eight at one time. (For more information, see “Submit a
Job to the Job Queue” on page 8-12.)

submit(j);

5 Wait for the job to complete, then get the results from all the tasks of the
job. (For more information, see “Retrieve the Job’s Results” on page 8-12.)

waitForState(j)
results = getAllOutputArguments(j)
results =

[2]

[4]

[6]

6 Programming Overview

6-10

6 Destroy the job. When you have the results, you can permanently remove
the job from the scheduler’s data location.

destroy(j)
Getting Help

® “Command-Line Help” on page 6-10
e “Help Browser” on page 6-11

Command-Line Help

You can get command-line help on the toolbox object functions by using the
syntax

help distcomp.objectType/functionName
For example, to get command-line help on the createTask function, type
help distcomp.job/createTask

The available choices for objectType are listed in the Chapter 10, “Object
Reference”.

Listing Available Functions. To find the functions available for each type of
object, type

methods (obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findResource('scheduler', 'type', 'jobmanager');
methods (jm)

To see the functions available for job objects, type

job1 = createdob(jm)
methods(job1)

To see the functions available for task objects, type

Using Parallel Computing Toolbox™ Software

task1l = createTask(job1,1,@rand, {3})
methods (task1)

Help Browser

You can open the Help browser with the doc command. To open the browser
on a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the
createdob function, type

doc distcomp/createdob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/UserData

6-11

6 Programming Overview

Program Development Guidelines

6-12

When writing code for Parallel Computing Toolbox software, you should
advance one step at a time in the complexity of your application. Verifying
your program at each step prevents your having to debug several potential
problems simultaneously. If you run into any problems at any step along the
way, back up to the previous step and reverify your code.

The recommended programming practice for distributed or parallel computing
applications is

1 Run code normally on your local machine. First verify all your

functions so that as you progress, you are not trying to debug the functions
and the distribution at the same time. Run your functions in a single
instance of MATLAB software on your local computer. For programming
suggestions, see “Techniques for Improving Performance” in the MATLAB
documentation.

Decide whether you need a distributed or parallel job. If your
application involves large data sets on which you need simultaneous
calculations performed, you might benefit from a parallel job with
distributed arrays. If your application involves looped or repetitive
calculations that can be performed independently of each other, a
distributed job might be appropriate.

Modify your code for division. Decide how you want your code divided.
For a distributed job, determine how best to divide it into tasks; for
example, each iteration of a for-loop might define one task. For a parallel
job, determine how best to take advantage of parallel processing; for
example, a large array can be distributed across all your labs.

Use pmode to develop parallel functionality. Use pmode with the local
scheduler to develop your functions on several workers (labs) in parallel.
As you progress and use pmode on the remote cluster, that might be all you
need to complete your work.

Run the distributed or parallel job with a local scheduler. Create a
parallel or distributed job, and run the job using the local scheduler with
several local workers. This verifies that your code is correctly set up for

Program Development Guidelines

batch execution, and in the case of a distributed job, that its computations
are properly divided into tasks.

6 Run the distributed job on only one cluster node. Run your
distributed job with one task to verify that remote distribution is
working between your client and the cluster, and to verify file and path

dependencies.

7 Run the distributed or parallel job on multiple cluster nodes. Scale
up your job to include as many tasks as you need for a distributed job, or as

many workers (labs) as you need for a parallel job.

Note The client session of MATLAB must be running the Java™ Virtual
Machine (JVM™) to use Parallel Computing Toolbox software. Do not start

MATLAB with the -nojvm flag.

6-13

6 Programming Overview

Life Cycle of a Job

When you create and run a job, it progresses through a number of stages.
Each stage of a job is reflected in the value of the job object’s State property,
which can be pending, queued, running, or finished. Each of these stages
is briefly described in this section.

The figure below illustrated the stages in the life cycle of a job. In the
job manager, the jobs are shown categorized by their state. Some of
the functions you use for managing a job are createdob, submit, and
getAllOutputArguments.

Worker
Scheduler
Queued Running
m e m
Pending | Job | Job '—
Job Job
--------- submi ..
createdob joz | Finished
Client I
getAllOutputArguments “TJob T
“Job

Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description

Pending You create a job on the scheduler with the createJdob
function in your client session of Parallel Computing
Toolbox software. The job’s first state is pending. This
1s when you define the job by adding tasks to it.

6-14

Life Cycle of a Job

Job Stage Description

Queued When you execute the submit function on a job, the
scheduler places the job in the queue, and the job’s
state 1s queued. The scheduler executes jobs in the
queue in the sequence in which they are submitted, all
jobs moving up the queue as the jobs before them are
finished. You can change the order of the jobs in the
queue with the promote and demote functions.

Running When a job reaches the top of the queue, the scheduler
distributes the job’s tasks to worker sessions for
evaluation. The job’s state is running. If more workers
are available than necessary for a job’s tasks, the
scheduler begins executing the next job. In this way,
there can be more than one job running at a time.

Finished When all of a job’s tasks have been evaluated, a job is
moved to the finished state. At this time, you can
retrieve the results from all the tasks in the job with the
function getAllOutputArguments.

Failed When using a third-party scheduler, a job might fail if
the scheduler encounters an error when attempting to
execute its commands or access necessary files.

Destroyed When a job’s data has been removed from its data
location or from the job manager, the state of the job in
the client is destroyed. This state is available only as
long as the job object remains in the client.

Note that when a job is finished, it remains in the job manager or
DatalLocation directory, even if you clear all the objects from the client
session. The job manager or scheduler keeps all the jobs it has executed, until
you restart the job manager in a clean state. Therefore, you can retrieve
information from a job at a later time or in another client session, so long as
the job manager has not been restarted with the -clean option.

To permanently remove completed jobs from the job manager or scheduler’s
data location, use the destroy function.

6-15

6 Programming Overview

6-16

Programming with User Configurations

In this section...

“Defining Configurations” on page 6-16

“Exporting and Importing Configurations” on page 6-22
“Validating Configurations” on page 6-23

“Applying Configurations in Client Code” on page 6-25

Defining Configurations

Configurations allow you to define certain parameters and properties, then
have your settings applied when creating objects in the MATLAB client. The
functions that support the use of configurations are

batch (also supports default configuration)

createdob (also supports default configuration)
createMatlabPoolJob (also supports default configuration)
createParalleldob (also supports default configuration)
createTask

dfeval

dfevalasync

findResource

matlabpool (also supports default configuration)

pmode (also supports default configuration)

set

Programming with User Configurations

You create and modify configurations through the Configurations Manager.
You access the Configurations Manager using the Parallel pull-down menu
on the MATLAB desktop. Select Parallel > Manage Configurations to
open the Configurations Manger.

Parallel Desktop Window Help+

Select Configuration

The first time you open the Configurations Manager, it lists only one
configuration called local, which at first is the default configuration and has
only default settings.

=} Configurations Manager ==
File Edit

Diefault |Name A |Type |Descrlptlun |
® local local

The following example provides instructions on how to create and modify
configurations using the Configurations Manager and its menus and dialog
boxes.

Example — Creating and Modifying User Configurations

Suppose you want to create a configuration to set several properties for some
jobs being run by a job manager.

6-17

6 Programming Overview

6-18

1 In the Configurations Manager, select New > jobmanager. This specifies

that you want a new configuration whose type of scheduler is a job manager.

). Configurations Manager

File Edit

gereric

Impant...

Expot:
local

Fiopeiics st

Z mpiskec
Exit :

pbspro
torque
NP N

This opens a new Job Manager Configuration Properties dialog box.

TN A,

2 Enter a configuration name MydMconfig1 and a description as shown in

the following figure. In the Scheduler tab, enter the host name for the
machine on which the job manager is running and the name of the job
manager. If you are entering information for an actual job manager already
running on your network, enter the appropriate text. If you are unsure
about job manager names and locations on your network, ask your system
administrator for help.

<) Job Manager Configuration Properties

Configuration name |M_\.\JMconfig1

Description |M}I job manager and 4 workers

Scheduler] Jobs] Tasks] Callback Functions]

Scheduler tppe [Type] jobmanager

Job manager hoztname

[LookupURL) PhHost

Job manager nanie

[Marne] |M_\.\J obManager

Programming with User Configurations

3 In the Jobs tab, enter 4 and 4 for the maximum and minimum number of
workers. This specifies that for jobs using this configuration, they require
at least four workers and use no more than four workers. Therefore, the
job runs on exactly four workers, even if it has to wait until four workers

are available before starting.

<) Job Manager Configuration Properties

Configuration name |M_\.\JMconfig1

Dezcription |My job manager and 4 workers

Scheduler JDbS] Tasks] Callback Functions

Filez and paths

Files and directaries ta copy from
client to cluster nodes
[FileD ependencies]

(e snliy per e

Directories to add to the workers'
path [PathDependencies]

One anty per e

Mumber of workers

M asirnurn nurnber of warkers
that can run job
[MawirmumMurmber0fwforkers)

Minimum number of workers
required to run job
[MinirmumM urmber0 faforkers]

Other job properties

Fiestart workers before

evaluating first task in job Unset =

[Restartwiorker)

Job timeout in geconds [Timeout]

0] | Cancel

Help |

4 Click OK to save the configuration and close the dialog box. Your new
configuration now appears in the Configurations Manager listing.

6-19

6 Programming Overview

6-20

5 To create a similar configuration with just a few differences, you can
duplicate an existing configuration and modify only the parts you need to
change:

a In the Configurations Manager, right-click the configuration
MyJMconfig1 in the list and select Duplicate.

) Configurations Manager = (O]
File Edit

My job manager and 4 workers

Expart...

Properties..

The duplicate configuration is created with a default name using the
original name along with the extension .copy1.

b Double-click the new configuration to open its properties dialog.
¢ Change the name of the new configuration to MyJMconfig2.

d Edit the description field to change its text to My job manager and any
workers.

Programming with User Configurations

6 Select the Jobs tab. Remove the 4 from each of the fields for minimum and

maximum workers.

<) Job Manager Configuration Properties

Configuration name |M5.\JMconfig2

[rezcription |My job manager and any workers

Scheduler JDbS] Tasks| Callback Functions |
Files and paths

Files and directaries to copy from
client to cluster nodes
[FileDependencies]

One antey per e

Directories to add to the workers'
path [PathDependencies]

One entry per e

Murnber of workers

b aimum number of workers
that can run job
[Maximumtumberdfsforkers]

Minimurm number of workers
required to run job
[Minirnumt urmber0 feforkers)

Other job properties

Restart workers before
evaluating first tagk in job

Unset =
[Restartuiarker)
Job timeout in zeconds [Timeout]

oK | Cancel

Help

7 Click OK to save the configuration and close the properties dialog.

You now have two configurations that differ only in the number of workers

required for running a job.

6-21

6 Programming Overview

6-22

«}. Configurations Manager (O] =]
Flle Edit

Default [Name + [Tupe [Desciption |
® local local

(o MulMconfig2 jobmanager My job manager and any workers
[e} Myt configl jobmanager My job manager and 4 workers

After creating a job, you can apply either configuration to that job as a way
of specifying how many workers it should run on.

Exporting and Importing Configurations

Parallel configurations are stored as part of your MATLAB preferences, so
they are generally available on an individual user basis. To make a parallel
configuration available to someone else, you can export it to a separate .mat
file. In this way, a repository of configurations can be created so that all users
of a computing cluster can share common configurations.

To export a parallel configuration:

1 In the Configurations Manager, select (highlight) the configuration you
want to export.

2 Click File > Export. (Alternatively, you can right-click the configuration
in the listing and select Export.)

3 In the Export Configuration dialog box, specify a location and name for the
file. The default file name is the same as the name of the configuration it
contains, with a .mat extension appended; these do not need to be the
same, so you can alter the names if you want to.

Programming with User Configurations

Configurations saved in this way can then be imported by other MATLAB
software users:

1 In the Configuration Manager, click File > Import.

2 In the Import Configuration dialog box, browse to find the .mat file for the
configuration you want to import. Select the file and click Import.

The imported configuration appears in your Configurations Manager list.
Note that the list contains the configuration name, which is not necessarily
the file name. If you already have a configuration with the same name as
the one you are importing, the imported configuration gets an extension
added to its name so you can distinguish it.

Exporting Configurations for MATLAB Compiler

You can use an exported configuration with MATLAB® Compiler™ to identify
cluster setup information for running compiled applications on a cluster. For
example, the setmcruserdata function can use the exported configuration
file name to set the value for the key ParallelConfigurationFile. For more
information, see “Improving Data Access Using the MCR User Data Interface”
in the MATLAB Compiler documentation.

Note MATLAB Compiler does not support configurations that use the local
scheduler or local workers.

Validating Configurations
The Configurations Manager includes a tool for validating configurations.

To validate a configuration, follow these steps:

1 Open the Configurations Manager by selecting on the desktop
Parallel > Manage Configurations.

2 In the Configurations Manager, click the name of the configuration you
want to test in the the list of those available. Note that you can highlight a
configuration this way without changing the selected default configuration.

6-23

6 Programming Overview

6-24

So a configuration selected for validation does not need to be your default
configuration.

3 Click Start Validation.

The Configuration Validation tool attempts four operations to validate the
chosen configuration:

e Uses findResource to locate the scheduler

¢ Runs a distributed job using the configuration

¢ Runs a parallel job using the configuration

¢ Runs a MATLAB pool job using the configuration

While the tests are running, the Configurations Manager displays their
progress as shown here.

) Configurations Manager 18 [=]
File Edit

Default |Name L |Type |Des:nplmn |V’a\id |
MyConfig jobmanager My Job Manager -
jobmanagerconfig1 jobmanager -

ocal local Bh:
Isfeonfig! Isf

lsfeonfig2 IsF

oXolie fole]

Configuration Validation

Name: local Test Stage Status Max Time Per Stage
Type: local Im-r EallEE
ype: foss Find Resource (2 Passed Details... 240 Seconds [Use Defal
Status: 3

Distributed Job @ Passed Details...
Parallsl Job 3, Running Details...

Matlabpool === Not Run Details...

Help i Stop Validation

You can adjust the timeout allowed for each stage of the testing. If your

cluster does not have enough workers available to perform the validation, the
test times out and returns a failure.

Note You cannot run a configuration validation if you have a MATLAB pool
open.

Programming with User Configurations

The configuration listing displays the overall validation result for each
configuration. The following figure shows overall validation results for one
configuration that passed and one that failed. The selected configuration

is the one that failed.

Ty e—
File Edit

o [=] B3

Default |Name A |Type

| Description

(s} IdyConfig jobmanager
el jobmanagerconlfigl jobmanager
e} local local

@ lsfeonfig! Isf

e} lsfeonfig? Isf

Configuration Validation

Name: jobmanagerconfigl Test Stage
Type: jobmanager

Status: ()

Find Resource
Distributed Job
Parallel Job

Matlabpool

Iy Job Manager

Status

o Failed
@ Skipped
& Skipped

(& Skipped

Details....

Details....

Details...

Details...

|vaid |

]
Q
- J
Max Time Per Stage
240 Seconds [Use Default

Note When using an mpiexec scheduler, a failure is expected for the
Distributed Job stage. It is normal for the test then to proceed to the

Parallel Job and Matlabpool stages.

For each stage of the validation testing, you can click Details to get more
information about that stage. This information includes any error messages,
debug logs, and other data that might be useful in diagnosing problems or
helping to determine proper configuration or network settings.

The Configuration Validation tool keeps the test results available until the

current MATLAB session closes.

Applying Configurations in Client Code

In the MATLAB client where you create and define your parallel computing
objects, you can use configurations when creating the objects, or you can

apply configurations to objects that already exist.

6-25

6 Programming Overview

Selecting a Default Configuration

Some functions support default configurations, so that if you do not specify a
configuration for them to use, they automatically apply the default. There
are several ways to specify which of your configurations should be used as the
default configuration:

¢ In the MATLAB desktop, click Parallel > Select Configuration, and
from there, all your configurations are available. The current default
configuration appears with a dot next to it. You can select any configuration
on the list as the default.

¢ In the Configurations Manager, the Default column indicates with a radio
button which configuration is currently the default configuration. You can
click any other button in this column to change the default configuration.

® You can get or set the default configuration programmatically by using the
defaultParallelConfig function. The following sets of commands achieve
the same thing:

defaultParallelConfig('MyJMconfig1"')
matlabpool open

matlabpool open MydMconfig1

Finding Schedulers

When executing the findResource function, you can use configurations to
1dentify a particular scheduler and apply property values. For example,

jm = findResource('scheduler', 'Configuration', 'our_jobmanager')

This command finds the scheduler defined by the settings of the configuration
named our_jobmanager and sets property values on the scheduler object
based on settings in the configuration. The advantage of configurations is
that you can alter your scheduler choices without changing your MATLAB
application code, merely by changing the configuration settings

For a third-party scheduler such as Platform LSF, the command might look
like

1sfsched = findResource('scheduler', 'Configuration', 'my_lsf_config');

6-26

Programming with User Configurations

Creating Jobs

Because the properties of scheduler, job, and task objects can be defined in a
configuration, you do not have to define them in your application. Therefore,
the code itself can accommodate any type of scheduler. For example,

job1 = createdob(sched, 'Configuration', 'MyConfig');

The configuration defined as MyConfig must define any and all properties
necessary and appropriate for your scheduler and configuration, and the
configuration must not include any parameters inconsistent with your setup.
All changes necessary to use a different scheduler can now be made in the
configuration, without any modification needed in the application.

Setting Job and Task Properties

You can set the properties of a job or task with configurations when you create
the objects, or you can apply a configuration after you create the object. The
following code creates and configures two jobs with the same property values.

job1 = createdob(jm, 'Configuration', 'our_jobmanager_config')
job2 = createdob(jm)
set(job2, 'Configuration', 'our_jobmanager_config')

Notice that the Configuration property of a job indicates the configuration
that was applied to the job.

get(job1, 'Configuration')
our_jobmanager_config

When you apply a configuration to an object, all the properties defined in
that configuration get applied to the object, and the object’s Configuration
property is set to reflect the name of the configuration that you applied. If
you later directly change any of the object’s individual properties, the object’s
Configuration property is cleared.

6-27

6 Programming Overview

Programming Tips and Notes

6-28

In this section...

“Saving or Sending Objects” on page 6-28

“Current Working Directory of a MATLAB Worker” on page 6-28
“Using clear functions” on page 6-29

“Running Tasks That Call Simulink Software” on page 6-29
“Using the pause Function” on page 6-29

“Transmitting Large Amounts of Data” on page 6-29
“Interrupting a Job” on page 6-29

“Speeding Up a Job” on page 6-30

Saving or Sending Obijects

Do not use the save or load function on Parallel Computing Toolbox objects.
Some of the information that these objects require is stored in the MATLAB
session persistent memory and would not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel
computing processes by means of an object’s properties. For example, you
cannot pass a job manager, job, task, or worker object to MATLAB workers
as part of a job’s JobData property.

Current Working Directory of a MATLAB Worker

The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work

where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name
of the node on which the worker is running, and WORKERNAME is the name of
the MATLAB worker session.

For example, if the worker named worker22 is running on host nodeA52, and
its CHECKPOINTBASE value is C: \TEMP\MDCE\Checkpoint, the starting current
directory for that worker session is

Programming Tips and Notes

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Using clear functions

Executing

clear functions

clears all Parallel Computing Toolbox objects from the current MATLAB
session. They still remain in the job manager. For information on recreating
these objects in the client session, see “Recovering Objects” on page 8-16.

Running Tasks That Call Simulink Software

The first task that runs on a worker session that uses Simulink software
can take a long time to run, as Simulink is not automatically started at the
beginning of the worker session. Instead, Simulink starts up when first
called. Subsequent tasks on that worker session will run faster, unless the
worker is restarted between tasks.

Using the pause Function

On worker sessions running on Macintosh or UNIX operating systems,
pause (inf) returns immediately, rather than pausing. This is to prevent a
worker session from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data

Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks.

Interrupting a Job

Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C (»C) in the client session to interrupt them. To control or interrupt
the execution of jobs and tasks, use such functions as cancel, destroy,
demote, promote, pause, and resume.

6-29

6 Programming Overview

6-30

Speeding Up a Job

You might find that your code runs slower on multiple workers than it does
on one desktop computer. This can occur when task startup and stop time
1s not negligible relative to the task run time. The most common mistake in
this regard is to make the tasks too small, i.e., too fine-grained. Another
common mistake is to send large amounts of input or output data with each
task. In both of these cases, the time it takes to transfer data and initialize
a task is far greater than the actual time it takes for the worker to evaluate
the task function.

Using the Parallel Profiler

Using the Parallel Profiler

In this section...

“Introduction” on page 6-31

“Collecting Parallel Profile Data” on page 6-31

“Viewing Parallel Profile Data” on page 6-32

Introduction

The parallel profiler provides an extension of the profile command and the
profile viewer specifically for parallel jobs, to enable you to see how much time
each lab spends evaluating each function and how much time communicating
or waiting for communications with the other labs. Before using the parallel
profiler, familiarize yourself with the standard profiler and its views, as
described in “Profiling for Improving Performance”.

Note The parallel profiler works on parallel jobs, including inside pmode. It
does not work on parfor-loops.

Collecting Parallel Profile Data

For parallel profiling, you use the mpiprofile command within your parallel
job (often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following
line in your parallel job task M-file, or type at the pmode prompt in the
Parallel Command Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each
lab and the communications between the labs. Such information includes:

e Execution time of each function on each lab
¢ Execution time of each line of code in each function

e Amount of data transferred between each lab

6-31

6 Programming Overview

6-32

* Amount of time each lab spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the
profiler collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

P>> mpiprofile status

For a complete list of options regarding profiler data details, clearing data,
etc., see the mpiprofile reference page.

Viewing Parallel Profile Data

To open the parallel profile viewer from pmode, type in the Parallel Command
Window:

P>> mpiprofile viewer

The remainder of this section is an example that illustrates some of the
features of the parallel profile viewer. This example executes in a pmode
session running on four local labs. Initiate pmode by typing in the MATLAB
Command Window:

pmode start local 4

When the Parallel Command Window (pmode) starts, type the following code
at the pmode prompt:

P>> R1 rand(16, codistributor())
P>> R2 rand(16, codistributor())
P>> mpiprofile on

P>> P = R1*R2

P>> mpiprofile off

P>> mpiprofile viewer

Using the Parallel Profiler

The last command opens the Profiler window, first showing the Parallel
Profile Summary (or function summary report) for lab 1.

B Profiler M=
Fle Edi Debug Deskiop Window Help »
-

CX =]

Paralle]l Profile Summary Generared 09-Jun-2008 16:36:30 using real time. —

Showing all functions called in lab 1

A ic Comparison Selecti M: 1 Comparison Selection Show Figures (al labs):
Compare (max vs. min TotalTime) | Goto]ab:|1 j

Plot Time Histograms

Plot All PerLab Communication
Compare (max vs. min CommTime) | Compare with: | None - Plot CommTimePerLab =

** Commmmication statistics are not available for Scal APACK functions. so data marked with ** might be inaccurate.

Function Name Calls Total Self Total Self Comm Total Computation Total Time Plot
Time Time* Comm Waiting Interlab Time Ratio (dark band is self time and
— Time Time Data oranze band is self waiting

— — i time)

codistributed mtimes 1 0.124s 0078s 0084s | 0079s 342Kb 324% —

codistributed. display 1 0.017s 0017s |0s 0s 0b 100.0% [

codistributor1d codistributor1d 2 00l6s 0016s 0s Os 0b 100.0% -

codistributor 1 0.016s O0s 0s 0s 0b 100.0% u

partitionIndices 4 0015s 0015s Os Os 0b 100.0% u

The function summary report displays the data for each function executed on
a lab in sortable columns with the following headers:

Column Header | Description

Calls How many times the function was called on this lab

Total Time The total amount of time this lab spent executing this
function

Self Time The time this lab spent inside this function, not within

children or subfunctions

Total Comm Time | The total time this lab spent transferring data with
other labs, including waiting time to receive data

Self Comm The time this lab spent during this function waiting to
Waiting Time receive data from other labs

6-33

6 Programming Overview

6-34

Column Header

Description

Total Interlab
Data

The amount of data transferred to and from this lab
for this function

Computation
Time Ratio

The ratio of time spent in computation for this function
vs. total time (which includes communication time) for
this function

Total Time Plot

Bar graph showing relative size of Self Time, Self
Comm Waiting Time, and Total Time for this function
on this lab

Using the Parallel Profiler

Click the name of any function in the list for more details about the execution
of that function. The function detail report for codistributed.mtimes
includes this listing:

B Profiler M=
Fie Edt Dsbug Dssktop ‘Window Help

Cam)| A

Y

X =l
Parents (calling fanctions) =l
No parent

Lines where the most fime was spent.

Comm Active

Line Total Data Data . % .

Number Code Calls Time Sent Rec \\:mﬂng Clomm Time Time Plot |
Time Time

145 Aloc = labsendReceive(to, from... |3 gp78. |171Kb|171Kb|0.079s 0.005s 63.4% | mummmmm

149 ¢ = codistributed{Cloc,codistr...

1 0030s 0b 0b 0s 0s 244% | mm
139 k = partitionIndices (Apart,lab... 1 0015s 0B 0b 0s 0s 122% m
151 cad 1 0s 0b 0b 0s 0s 0%

150 e 1 0s 0b 0b 0s 0s 0%

’ﬁlﬂe:’ﬂm 0.000s |0Ob 0b s 0s 0.0%

Totals 0124s 171Kb 171Kb 0079s 0005s 100%

** Conmmmnication statistics are not available for Scal APACK functions. so data marked with ** might be inaccurate.

4 | o

4

The code that is displayed in the report is taken from the client. If the code
has changed on the client since the parallel job ran on the labs, or if the
labs are running a different version of the functions, the display might not
accurately reflect what actually executed.

You can display information for each lab, or use the comparison controls to
display information for several labs simultaneously. Two buttons provide
Automatic Comparison Selection, allowing you to compare the data from
the labs that took the most versus the least amount of time to execute the code,
or data from the labs that spent the most versus the least amount of time in
performing interlab communication. Manual Comparison Selection allows
you to compare data from specific labs or labs that meet certain criteria.

6-35

6 Programming Overview

6-36

The following listing from the summary report shows the result of using

the Automatic Comparison Selection of Compare (max vs. min

TotalTime). The comparison shows data from lab 3 compared to lab 1
because these are the labs that spend the most versus least amount of time
executing the code.

B Profiler M=
Fie Edt Debug Desktop Window Help £
fam gt | A
[1p3 =
Parents (calling functions) =i
No parent
Lines where the most time was spent including the top 5 code lines from the comparison lab(maroon) J
Line .
Number |, e Totd Daa Dam g?'?;f ‘éc‘” % | Time
(forlab3 | —°°% ® Time Sent Rec raimg | -OmE Tine | Plot
and /) ime Time
) Aloc = labSendReceive (to, from... |3 0114s 171Kb 171Kb 0001s |0.123s |542%
13 3 0.078s | 1.71Kb | 1.7I1Kb | 0.079s | 0.005s 3.4% '
149 ¢ = codistributed(Cloc,codistr... |1 00495 0b 0b Os Os r
] 0.030s | 0b ab 0s 0s
139 k = partitionIndices (Apart,lab... |l 0b 0b Os Os r
1 0b [/X] O0s 0s
144 mwTlagd = 32116; 3 0b 0b 0s 0s 74% |g
3 0b 0b 0s 0s 0%
151 end 1 Os 0b 0b 0s 0s 0%

Using the Parallel Profiler

The following figure shows a summary of all the functions executed during the
profile collection time. The Manual Comparison Selection of max Time
Aggregate means that data is considered from all the labs for all functions to
determine which lab spent the maximum time on each function. Next to each
function’s name is the lab that took the longest time to execute that function.
The other columns list the data from that lab.

B Profiler = (O] x]
Fle Edt Debug Desktop Window Help ~
Cdm o Gh ||

[Acgegate [

Parallel Profile Summary Genaratad 09-Jun-2008 16:44:20 using real time. I—

Showing all functions called in lab max time

A ic Comparison Selecti M. 1 Comparison Selection Show Figures (all labs).
Compare (max vs. min TotalTime) | Go to Lab:l max Time Aggregate j Plot Time Histagrams
. Plot All PerLab Communication
Compare (maxvs. min CommTime) | Compare with: | None = Plot CommTimePerLab = &

** Commumnication statistics are not available for Scal APACK functions. so data marked with ** might be inaccurate.

Function Name Calls Total Self Total Self Comm Total Computation Total Time Plot
Time Time* Comm Waiting Interlab Time Ratio (dark band is self time
— Time Time Data and orance band is

== == === self waiting time)

codistributed mtimes (lab 3) 1 0.209s | 0129s 0124s 0001ls 342Kb 408% I

codistributed codistributed (lab 2) 1 0.077s 0.06ls |Os Os 0b 100.0% 1

partitionIndices (lab 3) 4 0.032s |0032s Os Os 0b 100.0% -

codistributor (lab Z) 1 0.030s [0.030s Os 0s 0b 100.0% [|

6-37

6 Programming Overview

6-38

The next figure shows a summary report for the labs that spend the most
versus least time for each function. A Manual Comparison Selection of
max Time Aggregate against min Time >0 Aggregate generated this
summary. Both aggregate settings indicate that the profiler should consider
data from all labs for all functions, for both maximum and minimum. This
report lists the data for codistributed.mtimes from labs 3 and 1, because
they spent the maximum and minimum times on this function. Similarly,

other functions are listed.

B Profiler = (O]]

File Edt Debug Desktop Window Help ~

D g | A

[Acgegate [
a

Parallel Profile Summary Generatad 09-Jun-2008 16:45:35 using real time.

Showing all functions called in lab max time compared with lab min time

A ic Comparison S

lecti M | Comparison Selection

Compare (max vs. min TotalTime) | Go to Lab:l max Time Aggregate

Compare (max vs. min CommTime) | Compare with: | min Time >0 Aggregate i

[

Show Figures (all labs)

Plot Time Histograms
Plot All PerLab Communication

Plot CommTimePerLab =l

Function Name Calls Total Self Total
comparison with lab min time Time Time* Comm
Time
codistributed mtimes (lab 3) 1 0209s 0.129s 0.124s
codistributed.mtimes (lab 1) ! 01245 [0.078s |0.084s
codistributed codistributed (lab 2) 1 0077s 0.061s Os
codistributed.codistributed (lab 1) ! 0.014s (0.014s Os
partitionIndices (lab 3) 4 0.032s 0032s Os

Self Comm
Waiting
Time
0.001s
0.079 5
Os

0s

Os

Total
Interlab
Data
342Kb
3.42Kb
0b

0b

0b

** Commmumnication statistics are not available for Scal APACK functions. so data marked with ** might be inaccurate.

Computation Total Time Plot

Time Ratio

40.8%
32.4%
100.0%
100.0%

100.0%

(dark band is self time
and orange band is self
waiting time)
[

Using the Parallel Profiler

Click on a function name in the summary listing of a comparison to get a
detailed comparison. The detailed comparison for codistributed.mtimes
looks like this, displaying line-by-line data from both labs:

B Profiler

(= [3]x]

Fle Edt Dsbug Desktop Window Hslp ~
A
a3 =l
Parents (calling functions)

No parent

Lines where the most time was spent including the top 5 code lines from the comparison lab(maroon) J

Line

_ Comm Active o .
Number Code Calls Total Data Data % Time

Waiti
(forlab 3 Time | Sent Rec Waing | Comm | o | piot
and 1) Time Time
145 Aloc = labSendReceive (to, from... |3 0114s [171Kb 0.001s |0123s
- 3 0.078 s | Kb 0.079 5 0.005 s
149 ¢ = codistributed(Cloc,codistr... |1 0049s 0b 0b 0s Os
! 0.030s [0 0b Os 0s
139 k = partitionIndices (&part,lab... |1 0032s 0b 0Ob 0s 0s
! 0.015s |08 ab 0s 0s

6-39

6 Programming Overview

To see plots of communication data, select Plot All PerLab Communication
in the Show Figures menu. The top portion of the plot view report plots how
much data each lab receives from each other lab for all functions.

P = (O] x]

File Edt Debug Desktop Window Help ~

B A W

5|Agg.egate [~
] a

Plot View =

Ganerated 09-Jun-2008 16:51:44 using veal fime.
PerLab Communication Images

No Plot =

Plot Time Histograms

Plot All Perl ab Communication
Show Figures (all labs): | Plot CommTimePerLab =

All Labs Data Received Per Lab
for all functions

1.71Kb
1600 (max)

1400

1200
1000
800

600

destination lab index

400

200

0

1 2 3 4
source lab index

6-40

Using the Parallel Profiler

To see only a plot of interlab communication times, select Plot

CommTimePerLab in the Show Figures menu.

B Profiler - [a]x]
N

Fie Edt Debug Deskiop Window Help

Ca o g |

: | Aagiegats

[~

Plot View
Generated 09-Jun-2008 16:52:03 using real time.
Comm Time Per Lab Image

No Plot El
Plot Time Histograms
Plot All PerLab Communication
Show Figures (all labs): Plot CommTimePerLab e

All Labs Receive Comm Time Per Lab
for all functions

012 0.12s
(max)

0.1

destination lab index

1 2 3 4
source lab index

3

A

Plots like those in the previous two figures can help you determine the best
way to balance work among your labs, perhaps by altering the partition

scheme of your codistributed arrays.

6-41

6 Programming Overview

Troubleshooting and Debugging

6-42

In this section...

“Object Data Size Limitations” on page 6-42
“File Access and Permissions” on page 6-42

“No Results or Failed Job” on page 6-44

“Connection Problems Between the Client and Job Manager” on page 6-45

Object Data Size Limitations

The size limit of data transfers among the parallel computing objects is
limited by the Java Virtual Machine (JVM) memory allocation. This limit
applies to single transfers of data between client and workers in any job using
a job manager as a scheduler, or in any parfor-loop. The approximate size
limitation depends on your system architecture:

System Maximum Data Size Per Transfer (approx.)
Architecture

64-bit 2.0 GB

32-bit 600 MB

File Access and Permissions

Ensuring That Workers on Windows Operating Systems Can
Access Files

By default, a worker on a Windows operating system 1is installed as a service
running as LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem
to access UNC or mapped network shares. In this case, you must run the
mdce service under a different user with rights to log on as a service. See the
section “Setting the User” in the MATLAB Distributed Computing Server
System Administrator’s Guide.

Troubleshooting and Debugging

Task Function Is Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function
function_name. One solution is to make sure the location of the function’s
file, function_name.m, is included in the job’s PathDependencies property.
Another solution is to transfer the function file to the worker by adding
function_name.m to the FileDependencies property of the job.

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save

Unable to write file myfile.mat: permission denied.

??? Error using ==> load

Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

® What is the worker’s current directory?
¢ Can the worker find the file or directory?
¢ What user is the worker running as?

® Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queuved State

A job or task might get stuck in the queued state. To investigate the cause of
this problem, look for the scheduler’s logs:

¢ Platform LSF schedulers might send e-mails with error messages.

e Windows HPC Server (including CCS), LSF®, PBS Pro, TORQUE, and
mpiexec save output messages in a debug log. See the getDebuglLog
reference page.

6-43

6 Programming Overview

6-44

¢ [f using a generic scheduler, make sure the submit function redirects error
messages to a log file.

Possible causes of the problem are

® The MATLAB worker failed to start due to licensing errors, the executable
1s not on the default path on the worker machine, or is not installed in the
location where the scheduler expected it to be.

e MATLAB could not read/write the job input/output files in the scheduler’s
data location. The data location may not be accessible to all the worker
nodes, or the user that MATLAB runs as does not have permission to
read/write the job files.

e [f using a generic scheduler

= The environment variable MDCE_DECODE_FUNCTION was not defined
before the MATLAB worker started.

= The decode function was not on the worker’s path.
¢ [f using mpiexec
= The passphrase to smpd was incorrect or missing.

= The smpd daemon was not running on all the specified machines.

No Results or Failed Job

Task Errors

If your job returned no results (i.e., getAl1lOutputArguments(job) returns an
empty cell array), it is probable that the job failed and some of its tasks have
their ErrorMessage and ErrorIdentifier properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job
object yourjob.

Troubleshooting and Debugging

Debug Logs

If you are using a supported third-party scheduler, you can use the
getDebuglLog function to read the debug log from the scheduler for a particular
job or task.

For example, find the failed job on your LSF scheduler, and read its debug log.

sched = findResource('scheduler', 'type', 'lsf')
failedjob = findJob(sched, 'State', 'failed');
message = getDebuglLog(sched, failedjob(1))

Connection Problems Between the Client and Job
Manager

For testing connectivity between the client machine and the machines of
your compute cluster, you can use Admin Center. For more information
about Admin Center, including how to start it and how to test connectivity,
see “Admin Center” in the MATLAB Distributed Computing Server
documentation.

Detailed instructions for other methods of diagnosing connection problems
between the client and job manager can be found in some of the Bug Reports
listed on the MathWorks Web site.

The following sections can help you identify the general nature of some
connection problems.

Client Cannot See the Job Manager
If you cannot locate your job manager with

findResource('scheduler', 'type', 'jobmanager')

the most likely reasons for this failure are

¢ The client cannot contact the job manager host via multicast. Try to fully
specify where to look for the job manager by using the LookupURL property

in your call to findResource:

findResource('scheduler', 'type', 'jobmanager’',
"LookupURL"', 'JobMgrHostName ")

6-45

http://www.mathworks.com/support/bugreports/?product=DM&product;=DW&release;=R14SP3

6 Programming Overview

6-46

The job manager is currently not running.

Firewalls do not allow traffic from the client to the job manager.

The client and the job manager are not running the same version of the
software.

The client and the job manager cannot resolve each other’s short hostnames.

Job Manager Cannot See the Client

If findResource displays a warning message that the job manager cannot
open a TCP connection to the client computer, the most likely reasons for
this are

¢ Firewalls do not allow traffic from the job manager to the client.

¢ The job manager cannot resolve the short hostname of the client computer.
Use pctconfig to change the hostname that the job manager will use for
contacting the client.

7

Evaluating Functions 1in a
Cluster

In many cases, the tasks of a job are all the same, or there are a limited
number of different kinds of tasks in a job. Parallel Computing Toolbox
software offers a solution for these cases that alleviates you from having to
define individual tasks and jobs when evaluating a function in a cluster of
workers. The two ways of evaluating a function on a cluster are described in
the following sections:

¢ “Evaluating Functions Synchronously” on page 7-2

e “Evaluating Functions Asynchronously” on page 7-8

7 Evaluating Functions in a Cluster

7-2

Evaluating Functions Synchronously

In this section...

“Scope of dfeval” on page 7-2
“Arguments of dfeval” on page 7-3

“Example — Using dfeval” on page 7-4

Scope of dfeval

When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated,

the number of tasks to divide the job into, and the variable into which the
results are returned. Synchronous (sync) evaluation in a cluster means that
your MATLAB session is blocked until the evaluation is complete and the
results are assigned to the designated variable. So you provide the necessary
information, while Parallel Computing Toolbox software handles all the
job-related aspects of the function evaluation.

When executing the dfeval function, the toolbox performs all these steps
of running a job:

1 Finds a job manager or scheduler

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager or scheduler
5 Retrieves the results from the job

6 Destroys the job

By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by Parallel Computing Toolbox software. However, this narrow functionality
meets the requirements of many straightforward applications. To focus the
scope of dfeval, the following limitations apply:

Evaluating Functions Synchronously

® You can pass property values to the job object; but you cannot set any
task-specific properties, including callback functions, unless you use
configurations.

e All the tasks in the job must have the same number of input arguments.
e All the tasks in the job must have the same number of output arguments.

e If you are using a third-party scheduler instead of the job manager, you
must use configurations in your call to dfeval. See “Programming with
User Configurations” on page 6-16, and the reference page for dfeval.

® You do not have direct access to the job manager, job, or task objects, i.e.,
there are no objects in your MATLAB workspace to manipulate (though
you can get them using findResource and the properties of the scheduler
object). Note that dfevalasync returns a job object.

e Without access to the objects and their properties, you do not have control
over the handling of errors.

Arguments of dfeval

Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[X, Y] = dfeval(@myfun, {al a2 a3 a4}, {b1 b2 b3 b4}, {c1 c2 c3 c4});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number
of elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, X and Y. These cell arrays will have four elements each, for
the four tasks. The first element of X will have the first output argument from
the first task, the first element of Y will have the second argument from the
first task, and so on.

The following table shows how the job is divided into tasks and where the
results are returned.

Task Function Call Results

myfun(al, b1, c1) X{1}, Y{1}

7-3

7 Evaluating Functions in a Cluster

Task Function Call Results

myfun(a2, b2, c2) X{2}, Y{2}
myfun(a3, b3, c3) X{3}, Y{3}
myfun(a4, b4, c4) X{4}, Y{4}

So using one dfeval line would be equivalent to the following code, except
that dfeval can run all the statements simultaneously on separate machines.

[X{1}, Y{1}] = myfun(al, b1, c1);
[X{2}, Y{2}] = myfun(a2, b2, c2);
[X{3}, Y{38}] = myfun(a3, b3, c3);
[X{4}, Y{4}] = myfun(a4, b4, c4);

For further details and examples of the dfeval function, see the dfeval
reference page.

Example — Using dfeval

Suppose you have a function called averages, which returns both the mean
and median of three input values. The function might look like this.

function [mean_, median_] = averages (in1, in2, in3)

% AVERAGES Return mean and median of three input values
mean_ = mean([in1, in2, in3]);

median_ = median([in1, in2, in3]);

You can use dfeval to run this function on four sets of data using four tasks
in a single job. The input data can be represented by the four vectors,

[1 2 6]

[10 20 60]

[100 200 600]
[1000 2000 6000]

Evaluating Functions Synchronously

A quick look at the first set of data tells you that its mean is 3, while its
median is 2. So,

[x,y] = averages(1,2,6)

When calling dfeval, its input requires that the data be grouped together
such that the first input argument to each task function is in the first cell
array argument to dfeval, all second input arguments to the task functions
are grouped in the next cell array, and so on. Because we want to evaluate
four sets of data with four tasks, each of the three cell arrays will have four
elements. In this example, the first arguments for the task functions are 1,
10, 100, and 1000. The second inputs to the task functions are 2, 20, 200, and
2000. With the task inputs arranged thus, the call to dfeval looks like this.

[A, B] = dfeval(@averages, {1 10 100 1000},
{2 20 200 2000}, {6 60 600 6000}, 'jobmanager',
'MyJobManager', 'FileDependencies', {'averages.m'})

[3]
[30]
[300]
[3000]

[2]
[20]
[200]
[2000]

Notice that the first task evaluates the first element of the three cell arrays.
The results of the first task are returned as the first elements of each of the
two output values. In this case, the first task returns a mean of 3 and median
of 2. The second task returns a mean of 30 and median of 20.

7 Evaluating Functions in a Cluster

If the original function were written to accept one input vector, instead of
three input values, it might make the programming of dfeval simpler. For
example, suppose your task function were

function [mean_, median_] = avgs (V)

% AVGS Return mean and median of input vector
mean_ = mean(V);

median_ = median(V);

Now the function requires only one argument, so a call to dfeval requires
only one cell array. Furthermore, each element of that cell array can be a
vector containing all the values required for an individual task. The first
vector 1s sent as a single argument to the first task, the second vector to the
second task, and so on.

[A,B] = dfeval(@avgs, {[1 2 6] [10 20 60]
[100 200 600] [1000 2000 60001}, 'jobmanager’,
'MyJobManager', 'FileDependencies', {'avgs.m'})

[3]
[30]
[300]
[3000]

[2]
[20]
[200]
[2000]

If you cannot vectorize your function, you might have to manipulate your
data arrangement for using dfeval. Returning to our original data in this
example, suppose you want to start with data in three vectors.

vi = [1 2 6];
v2 = [10 20 60];

v3 = [100 200 600];

v4 = [1000 2000 6000];

7-6

Evaluating Functions Synchronously

First put all your data in a single matrix.

dataset = [v1; v2; v3; v4]

dataset =
1 2 6
10 20 60
100 200 600
1000 2000 6000

Then make cell arrays containing the elements in each column.

c1 = num2cell(dataset(:,1));
c2 = num2cell(dataset(:,2));
c3 num2cell(dataset(:,3));

Now you can use these cell arrays as your input arguments for dfeval.

[A, B] = dfeval(@averages, c1, c2, c3, 'jobmanager',
'MyJobManager', 'FileDependencies', {'averages.m'})

[3]
[30]
[300]
[3000]

[2]
[20]
[200]
[2000]

7 Evaluating Functions in a Cluster

Evaluating Functions Asynchronously

The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job to the
job manager and get access to the command line while the job is being run
asynchronously (async), you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To asynchronously run the example of the previous section, type

job1 = dfevalasync(@averages, 2, ci1, c2, c3, 'jobmanager',
'MyJobManager', 'FileDependencies', {'averages.m'});

Note that you have to specify the number of output arguments that each
task will return (2, in this example).

The MATLAB session does not wait for the job to execute, but returns the
prompt immediately. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(job1, 'finished')
results = getAllOutputArguments(job1)

results =
[3] [2]
[30] [20]
[300] [200]
[3000] [2000]

The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,

7-8

Evaluating Functions Asynchronously

each row of the cell array results will have two elements. So, results{1,1}
contains the first output argument from the first task, results{1,2} contains
the second argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.

7-9

7 Evaluating Functions in a Cluster

7-10

Programming Distributed
Jobs

A distributed job is one whose tasks do not directly communicate with each
other. The tasks do not need to run simultaneously, and a worker might
run several tasks of the same job in succession. Typically, all tasks perform
the same or similar functions on different data sets in an embarrassingly
parallel configuration.

The following sections describe how to program distributed jobs:

e “Using a Local Scheduler” on page 8-2

e “Using a Job Manager” on page 8-8

e “Using a Fully Supported Third-Party Scheduler” on page 8-19
e “Using the Generic Scheduler Interface” on page 8-31

8 Programming Distributed Jobs

8-2

Using a Local Scheduler

In this section...

“Creating and Running Jobs with a Local Scheduler” on page 8-2
“Local Scheduler Behavior” on page 8-6

Creating and Running Jobs with a Local Scheduler

For jobs that require more control than the functionality offered by dfeval,
you have to program all the steps for creating and running the job. Using the
local scheduler lets you create and test your jobs without using the resources
of your cluster. Distributing tasks to workers that are all running on your
client machine might not offer any performance enhancement, so this feature
is provided primarily for code development, testing, and debugging.

Note Workers running from a local scheduler on a Microsoft Windows
operating system can display Simulink graphics as well as the output from
certain functions such as uigetfile and uigetdir. (With other platforms or
schedulers, workers cannot display any graphical output.) This behavior is
subject to removal in a future release.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software using a local scheduler:

e “Create a Scheduler Object” on page 8-3

e “Create a Job” on page 8-3

® “Create Tasks” on page 8-5

® “Submit a Job to the Scheduler” on page 8-5

e “Retrieve the Job’s Results” on page 8-5

Note that the objects that the client session uses to interact with the scheduler
are only references to data that is actually contained in the scheduler’s data

location, not in the client session. After jobs and tasks are created, you can
close your client session and restart it, and your job is still stored in the data

Using a Local Scheduler

location. You can find existing jobs using the findJob function or the Jobs
property of the scheduler object.

Create a Scheduler Object

You use the findResource function to create an object in your local MATLAB
session representing the local scheduler.

sched = findResource('scheduler', 'type','local');

Create a Job

You create a job with the createdob function. This statement creates a job
in the scheduler’s data location, creates the job object job1 in the client
session, and if you omit the semicolon at the end of the command, displays
some information about the job.

job1 = createdob(sched)

Job ID 1 Information

UserName : eng864
State : pending
SubmitTime :
StartTime
Running Duration

- Data Dependencies

FileDependencies : {}
PathDependencies : {}

- Associated Task(s)

o

Number Pending

Number Running :

Number Finished : O
TaskID of errors

o

You can use the get function to see all the properties of this job object.

8-3

8 Programming Distributed Jobs

get(job1)
Configuration: "'
Name: 'Job1'
ID: 1
UserName: 'eng864'
Tag: ''
State: 'pending'
CreateTime: 'Mon Jan 08 15:40:18 EST 2007'
SubmitTime: '
StartTime: '
FinishTime: "'
Tasks: [0x1 double]
FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}
JobData: []
Parent: [1x1 distcomp.localscheduler]
UserData: []

Note that the job’s State property is pending. This means the job has not yet
been submitted (queued) for running, so you can now add tasks to it.

The scheduler’s display now indicates the existence of your job, which is the
pending one.

sched

Local Scheduler Information

Type : local
ClusterOsType : pcC
DatalLocation : C:\WINNT\Profiles\eng864\App...
HasSharedFilesystem : true
- Assigned Jobs

Number Pending : 1
Number Queued : 0
Number Running : O
Number Finished : O

8-4

Using a Local Scheduler

- Local Specific Properties

ClusterMatlabRoot : D:\apps\matlab

Create Tasks

After you have created your job, you can create tasks for the job using
the createTask function. Tasks define the functions to be evaluated by
the workers during the running of the job. Often, the tasks of a job are all
identical. In this example, five tasks will each generate a 3-by-3 matrix
of random numbers.

createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});
The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1, 'Tasks')
ans =
distcomp.task: 5-by-1

Submit a Job to the Scheduler

To run your job and have its tasks evaluated, you submit the job to the
scheduler with the submit function.

submit (job1)

The local scheduler starts up to eight workers and distributes the tasks of
job1 to its workers for evaluation.

Retrieve the Job’s Results

The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. After waiting for the job to
complete, use the function getAllOutputArguments to retrieve the results
from all the tasks in the job.

waitForState(job1)
results = getAllOutputArguments(job1);

Display the results from each task.

8-5

8 Programming Distributed Jobs

results{1:5}

o

.9501 .4860 0.4565
.2311 .8913 .0185
0.6068 0.7621 0.8214

o

o
o
o

o

.4447 .9218 0.4057
.6154 .7382 .9355
0.7919 0.1763 0.9169

o

o
o
o

o

.4103 .3529 .1389
.8936 .8132 .2028
0.0579 0.0099 0.1987

o
o

o
o
o

o

.6038 .0153 0.9318
.2722 .7468 0.4660
0.1988 0.4451 0.4186

o

o
o

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Local Scheduler Behavior

The local scheduler runs in the MATLAB client session, so you do not have
to start any separate scheduler process for the local scheduler. When you
submit a job for evaluation to the local scheduler, the scheduler starts a
MATLAB worker for each task in the job, but only up to as many workers as
the scheduler is configured to allow. If your job has more tasks than allowed
workers, the scheduler waits for one of the current tasks to complete before
starting another MATLAB worker to evaluate the next task. You can modify
the number of allowed workers in the local scheduler configuration, up to
a maximum of eight. If not configured, the default is to run only as many
workers as computational cores on the machine.

The local scheduler has no interaction with any other scheduler, nor with any
other workers that might also be running on your client machine under the
mdce service. Multiple MATLAB sessions on your computer can each start
its own local scheduler with its own eight workers, but these groups do not
interact with each other, so you cannot combine local groups of workers to
increase your local cluster size.

8-6

Using a Local Scheduler

When you end your MATLAB client session, its local scheduler and any
workers that happen to be running at that time also stop immediately.

8-7

8 Programming Distributed Jobs

Using a Job Manager

In this section...

“Creating and Running Jobs with a Job Manager” on page 8-8
“Sharing Code” on page 8-13

“Managing Objects in the Job Manager” on page 8-16

Creating and Running Jobs with a Job Manager

For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software using a MathWorks job manager:

“Find a Job Manager” on page 8-8

e “Create a Job” on page 8-10

e “Create Tasks” on page 8-11

® “Submit a Job to the Job Queue” on page 8-12
e “Retrieve the Job’s Results” on page 8-12

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created,
you can close your client session and restart it, and your job is still stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.

Find a Job Manager

You use the findResource function to identify available job managers and to
create an object representing a job manager in your local MATLAB session.

Using a Job Manager

To find a specific job manager, use parameter-value pairs for matching. In
this example, MyJobManager is the name of the job manager, while MyJMhost
1s the hostname of the machine running the job manager lookup service.

jm = findResource('scheduler', 'type', 'jobmanager’',
‘Name', 'MyJobManager', 'LookupURL', 'MyJdMhost"');
get(jm)
Configuration: ''
Name: 'MyJobManager'
Hostname: 'bonanza’
HostAddress: {'123.123.123.123'}
Type: 'jobmanager'
ClusterOsType: 'pc'
Jobs: [0x1 double]
State: 'running'
UserData: []
ClusterSize: 2
NumberOfBusyWorkers: 0
BusyWorkers: [0x1 double]
NumberOfIdleWorkers: 2
IdleWorkers: [2x1 distcomp.worker]

If your network supports multicast, you can omit property values to search
on, and findResource returns all available job managers.

all managers = findResource('scheduler', 'type','jobmanager')

You can then examine the properties of each job manager to identify which
one you want to use.

for i = 1:1length(all_managers)
get(all_managers(i))
end

When you have identified the job manager you want to use, you can isolate
it and create a single object.

jm = all _managers(3)

8-9

8 Programming Distributed Jobs

Create a Job

You create a job with the createdob function. Although you execute this
command in the client session, the job is actually created on the job manager.

job1 = createdob(jm)

This statement creates a job on the job manager jm, and creates the job object
job1 in the client session. Use get to see the properties of this job object.

8-10

get(job1)
Configuration: ''
Name: 'job_3'
ID: 3
UserName: 'eng864'
Tag: ''
State: 'pending'
RestartWorker: 0
Timeout: Inf

MaximumNumberOfWorkers:
MinimumNumberOfWorkers:
CreateTime:

SubmitTime:

StartTime:

FinishTime:

Tasks:
FileDependencies:
PathDependencies:
JobData:

Parent:

UserData:

QueuedFcn:

RunningFcn:
FinishedFcn:

Note that the job’s State property is pending. This means the job has not

2.1475e+009
1
‘Thu Oct 21 19:38:08 EDT 2004

[0x1 double]

{0x1 cell}

{0x1 cell}

[]

[1x1 distcomp.jobmanager]
[]

[]

[]

[]

been queued for running yet, so you can now add tasks to it.

The job manager’s Jobs property is now a 1-by-1 array of distcomp. job
objects, indicating the existence of your job.

get(jm)

Using a Job Manager

Configuration:

Name :

Hostname:
HostAddress:

Type:

ClusterOsType:

Jobs:

State:

UserData:
ClusterSize:
NumberOfBusyWorkers:
BusyWorkers:
NumberOfIdleWorkers:
IdleWorkers:

"MyJobManager'
"bonanza’
{'123.123.123.123"'}
' jobmanager'

'pc’

[1x1 distcomp.job]
‘running'

[1

2

0

[0x1 double]

2

[2x1 distcomp.worker]

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and

“Sharing Code” on page 8-13.

Create Tasks

After you have created your job, you can create tasks for the job using

the createTask function. Tasks define the functions to be evaluated by

the workers during the running of the job. Often, the tasks of a job are all
identical. In this example, each task will generate a 3-by-3 matrix of random

numbers.

createTask(job1,
createTask(job1,
createTask(job1,
createTask(job1,
createTask(job1,

[G G G G Y

~
w
w
-

~
w
w
-

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1, 'Tasks')

ans =

distcomp.task: 5-by-1

8-11

8 Programming Distributed Jobs

8-12

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T 1s a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the job
queue with the submit function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.

Retrieve the Job’s Results

The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use the function
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);
Display the results from each task.

results{1:5}

0.9501 .4860 .4565
0.2311 .8913 .0185
0.6068 0.7621 0.8214

o
o

o
o

o

0.4447 .9218 0.4057
.6154 .7382 0.9355
0.7919 0.1763 0.9169

o
o

0.4103 .3529 0.1389
.8936 .8132 0.2028
0.0579 0.0099 0.1987

o

o
o

Using a Job Manager

o

.6038 .0153 0.9318
.2722 .7468 .4660
0.1988 0.4451 0.4186

o

o
o
o

0.8462 0.6721 .6813
0.5252 0.8381 .3795
0.2026 0.0196 0.8318

o o

Sharing Code

Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing code are explained in the following sections:

¢ “Directly Accessing Files” on page 8-13

e “Passing Data Between Sessions” on page 8-14

® “Passing M-Code for Startup and Finish” on page 8-15

Directly Accessing Files

If the workers all have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
right places. You can define the path

* By using the job’s PathDependencies property. This is the preferred
method for setting the path, because it is specific to the job.

® By putting the path command in any of the appropriate startup files for
the worker:

= matlabroot\toolbox\local\startup.m
= matlabroot\toolbox\distcomp\user\jobStartup.m
= matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

8-13

8 Programming Distributed Jobs

8-14

Access to files among shared resources can depend upon permissions based
on the user name. You can set the user name with which the job manager
and worker services of MATLAB Distributed Computing Server software
run by setting the MDCEUSER value in the mdce_def file before starting

the services. For Microsoft Windows operating systems, there is also
MDCEPASS for providing the account password for the specified user. For an
explanation of service default settings and the mdce_def file, see “Defining
the Script Defaults” in the MATLAB Distributed Computing Server System
Administrator’s Guide.

Passing Data Between Sessions

A number of properties on task and job objects are designed for passing code
or data from client to job manager to worker, and back. This information
could include M-code necessary for task evaluation, or the input data for
processing or output data resulting from task evaluation. All these properties
are described in detail in their own reference pages:

® InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

® QutputArguments — This property of each task contains the results of the
function’s evaluation.

® JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because the data is passed to a worker only once per job, saving
time if that worker is evaluating more than one task for the job.

e FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

® PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

There is a default maximum amount of data that can be sent in a single call
for setting properties. This limit applies to the OutputArguments property as
well as to data passed into a job as input arguments or FileDependencies. If

Using a Job Manager

the limit is exceeded, you get an error message. For more information about
this data transfer size limit, see “Object Data Size Limitations” on page 6-42.

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each

time it starts. You can place the startup.m file in any directory on the
worker’'s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean up a worker session as it
begins or completes evaluations of tasks for a job:

® jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

® taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

® taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the path
names to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any
of these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker's MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

8-15

8 Programming Distributed Jobs

8-16

Managing Objects in the Job Manager

Because all the data of jobs and tasks resides in the job manager, these
objects continue to exist even if the client session that created them has
ended. The following sections describe how to access these objects and how to
permanently remove them:

* “What Happens When the Client Session Ends” on page 8-16
® “Recovering Objects” on page 8-16
e “Resetting Callback Properties” on page 8-17

¢ “Permanently Removing Objects” on page 8-17

What Happens When the Client Session Ends

When you close the client session of Parallel Computing Toolbox software, all
of the objects in the workspace are cleared. However, the objects in MATLAB
Distributed Computing Server software remain in place. Job objects and task
objects reside on the job manager. Local objects in the client session can refer
to job managers, jobs, tasks, and workers. When the client session ends, only
these local reference objects are lost, not the actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the
job manager. The job manager maintains its job and task objects. You can
retrieve the job results later in another client session.

Recovering Objects

A client session of Parallel Computing Toolbox software can access any of the
objects in MATLAB Distributed Computing Server software, whether the
current client session or another client session created these objects.

You create job manager and worker objects in the client session by using
the findResource function. These client objects refer to sessions running in
the engine.

jm = findResource('scheduler', 'type','jobmanager',
‘Name', 'Job_Mgr_123', 'LookupURL', 'JobMgrHost")

Using a Job Manager

If your network supports multicast, you can find all available job managers by
omitting any specific property information.

jm_set = findResource('scheduler','type','jobmanager')

The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager
is of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.

all_jobs = get(jm, 'dJobs"')
You can index through the array all jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm, 'State','finished')

This command returns an array of job objects that reference all finished jobs
on the job manager jm.

Resetting Callback Properties

When restarting a client session, you lose the settings of any callback
properties (for example, the FinishedFcn property) on jobs or tasks. These
properties are commonly used to get notifications in the client session of state
changes in their objects. When you create objects in a new client session that
reference existing jobs or tasks, you must reset these callback properties if
you intend to use them.

Permanently Removing Objects

Jobs in the job manager continue to exist even after they are finished, and
after the job manager is stopped and restarted. The ways to permanently
remove jobs from the job manager are explained in the following sections:

8-17

8 Programming Distributed Jobs

® “Destroying Selected Objects” on page 8-18
® “Starting a Job Manager from a Clean State” on page 8-18

Destroying Selected Objects. From the command line in the MATLAB
client session, you can call the destroy function for any job or task object. If
you destroy a job, you destroy all tasks contained in that job.

For example, find and destroy all finished jobs in your job manager that
belong to the user joep.

jm = findResource('scheduler', 'type', 'jobmanager’',

‘Name ', 'MyJobManager', 'LookupURL', 'JobMgrHost"')
finished_jobs = findJob(jm, 'State','finished’, 'UserName', 'joep"')
destroy(finished_jobs)
clear finished_jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Starting a Job Manager from a Clean State. When a job manager starts,
by default it starts so that it resumes its former session with all jobs intact.
Alternatively, a job manager can start from a clean state with all its former
history deleted. Starting from a clean state permanently removes all job and
task data from the job manager of the specified name on a particular host.

As a network administration feature, the -clean flag of the job manager

startup script is described in “Starting in a Clean State” in the MATLAB
Distributed Computing Server System Administrator’s Guide.

8-18

Using a Fully Supported Third-Party Scheduler

Using a Fully Supported Third-Party Scheduler

In this section...

“Creating and Running Jobs” on page 8-19
“Sharing Code” on page 8-26

“Managing Objects” on page 8-28

Creating and Running Jobs

If your network already uses Platform LSF (Load Sharing Facility), Microsoft
Windows HPC Server (including CCS), PBS Pro, or a TORQUE scheduler, you
can use Parallel Computing Toolbox software to create jobs to be distributed
by your existing scheduler. This section provides instructions for using your
scheduler.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software for jobs distributed to workers by a fully
supported third-party scheduler.

This section assumes you have an LSF, PBS Pro, TORQUE, or Windows
HPC Server (including CCS and HPC Server 2008) scheduler installed
and running on your network. For more information about LSF, see
http://www.platform.com/Products/. For more information about
Windows HPC Server, see http://www.microsoft.com/hpc.

The following sections illustrate how to program Parallel Computing Toolbox
software to use these schedulers:

¢ “Find an LSF, PBS Pro, or TORQUE Scheduler” on page 8-20
¢ “Find a Windows HPC Server Scheduler” on page 8-21

e “Create a Job” on page 8-23

e “Create Tasks” on page 8-24

® “Submit a Job to the Job Queue” on page 8-25

e “Retrieve the Job’s Results” on page 8-25

8-19

http://www.platform.com/Products/
http://www.microsoft.com/hpc

8 Programming Distributed Jobs

8-20

Find an LSF, PBS Pro, or TORQUE Scheduler

You use the findResource function to identify the type of scheduler and to
create an object representing the scheduler in your local MATLAB client
session.

You specify the scheduler type for findResource to search for with one of
the following:

sched findResource('scheduler', 'type', '1sf')
sched = findResource('scheduler', 'type', 'pbspro')
sched findResource('scheduler', 'type', 'torque')

You set properties on the scheduler object to specify

® Where the job data is stored
¢ That the workers should access job data directly in a shared file system

e The MATLAB root for the workers to use

set(sched, 'DataLocation', '\\share\scratch\jobdata')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

Alternatively, you can use a parallel configuration to find the scheduler and
set the object properties with a single findResource statement.

If DatalLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory specified
in the scheduler object’s DataLocation directory. See the DataLocation
reference page for information on setting this property for a mixed-platform
environment.

Using a Fully Supported Third-Party Scheduler

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)

Configuration:

Type:

DatalLocation:
HasSharedFilesystem:
Jobs:
ClusterMatlabRoot:
ClusterOsType:
UserData:
ClusterSize:
ClusterName:
MasterName:
SubmitArguments:
ParallelSubmissionWrapperScript:

'1sf!

"\\share\scratch\jobdata'

1

[0x1 double]

"\\apps\matlab\'

'unix'

[1]

Inf

'CENTER_MATRIX_CLUSTER'
'‘masterhost.clusternet.ourdomain.com’

[1x92 char]

Find a Windows HPC Server Scheduler

You use the findResource function to identify the Windows HPC Server
scheduler and to create an object representing the scheduler in your local

MATLAB client session.

You specify 'hpcserver' as the scheduler type for findResource to search for.

sched =

findResource('scheduler', 'type', "hpcserver')

You set properties on the scheduler object to specify

® Where the job data is stored

e The MATLAB root for the workers to use

¢ The operating system of the cluster

e The name of the scheduler host

¢ (Cluster version, and whether to use SOA job submission)available only on
Microsoft Windows HPC Server 2008).

set(sched,
set(sched,

'DatalLocation',

"\\share\scratch\jobdata');
'ClusterMatlabRoot’,

"\\apps\matlab\');

8-21

8 Programming Distributed Jobs

8-22

set(sched, 'ClusterOsType', 'pc');

set(sched, 'SchedulerHostname', 'server04');
set(sched, 'ClusterVersion', 'HPCServer2008');
set(sched, 'UseSOAJobSubmission', false);

Alternatively, you can use a parallel configuration to find the scheduler and
set the object properties with a single findResource statement.

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note Because Windows HPC Server requires a shared file system, all
nodes require access to the directory specified in the scheduler object’s
DataLocation directory.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
Configuration: ''
Type: 'hpcserver'
DataLocation: '\\share\scratch\jobdata'
HasSharedFilesystem: 1
Jobs: [0x1 double]
ClusterMatlabRoot: '\\apps\matlab\'
ClusterOsType: 'pc'
UserData: []
ClusterSize: Inf
SchedulerHostname: 'server04'
UseSOAJobSubmission: 0
JobTemplate: ''
JobDescriptionFile: ''
ClusterVersion: 'HPCServer2008'

Using a Fully Supported Third-Party Scheduler

Create a Job

You create a job with the createJdob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DatalLocation property.

j = createdob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Configuration: "'
Name: 'Job1'
ID: 1
UserName: 'engl'
Tag: ''

State: 'pending'
CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'
SubmitTime: ''
StartTime: '
FinishTime: "'

Tasks: [0x1 double]
FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.lsfscheduler]
UserData: []

This output varies only slightly between jobs that use LSF and Windows
HPC Server schedulers, but is quite different from a job that uses a job
manager. For example, jobs on LSF or Windows HPC Server schedulers have
no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched, 'Jobs')

8-23

8 Programming Distributed Jobs

8-24

Jobs: [1x1 distcomp.simplejob]

You can transfer files to the worker by using the FileDependencies
property of the job object. Workers can access shared files by using

the PathDependencies property of the job object. For details, see the
FileDependencies and PathDependencies reference pages and “Sharing
Code” on page 8-26.

Note In a shared file system, MATLAB clients on many computers can access
the same job data on the network. Properties of a particular job or task should
be set from only one computer at a time.

Create Tasks

After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are all identical except for different arguments or
data. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(j, @rand, 1
createTask(j, @rand, 1
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1
createTask(j, @rand, 1

The Tasks property of j is now a 5-by-1 matrix of task objects.
get(j, 'Tasks')

ans =
distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

Using a Fully Supported Third-Party Scheduler

Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of job j to MATLAB workers for
evaluation. For each task, the scheduler starts a MATLAB worker session on
a worker node; this MATLAB worker session runs for only as long as it takes
to evaluate the one task. If the same node evaluates another task in the same
job, it does so with a different MATLAB worker session.

The job runs asynchronously with the MATLAB client. If you need to wait for
the job to complete before you continue in your MATLAB client session, you
can use the waitForState function.

waitForState(j)

The default state to wait for is finished. This function causes MATLAB to
pause until the State property of j is 'finished'.

Note When you use an LSF scheduler in a nonshared file system, the
scheduler might report that a job is in the finished state even though the LSF
scheduler might not yet have completed transferring the job’s files.

Retrieve the Job’s Results

The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185

8-25

8 Programming Distributed Jobs

8-26

0.6068 0.7621 0.8214

o

. 4447 .9218 0.4057
.6154 .7382 0.9355
0.7919 0.1763 0.9169

o

o
o

o

.4103 .3529 0.1389
.8936 .8132 .2028
0.0579 0.0099 0.1987

o

o
o
o

o

.6038 .0153 .9318
.2722 .7468 .4660
0.1988 0.4451 0.4186

o
o

o
o
o

0.8462 0.6721 0.6813
0.5252 0.8381 .3795
0.2026 0.0196 0.8318

o

Sharing Code

Because different machines evaluate the tasks of a job, each machine must
have access to all the files needed to evaluate its tasks. The following sections
explain the basic mechanisms for sharing data:

® “Directly Accessing Files” on page 8-26

e “Passing Data Between Sessions” on page 8-27

® “Passing M-Code for Startup and Finish” on page 8-28

Directly Accessing Files

If all the workers have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
correct places. You can define the path by

¢ Using the job’s PathDependencies property. This is the preferred method
for setting the path, because it is specific to the job.

Using a Fully Supported Third-Party Scheduler

Putting the path command in any of the appropriate startup files for the
worker:

= matlabroot\toolbox\local\startup.m
= matlabroot\toolbox\distcomp\user\jobStartup.m
= matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Passing Data Between Sessions

A number of properties on task and job objects are for passing code or data
from client to scheduler or worker, and back. This information could include
M-code necessary for task evaluation, or the input data for processing or
output data resulting from task evaluation. All these properties are described
in detail in their own reference pages:

InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

OutputArguments — This property of each task contains the results of the
function’s evaluation.

JobData — This property of the job object contains data that gets sent

to every worker that evaluates tasks for that job. This property works
efficiently because depending on file caching, the data might be passed to
a worker node only once per job, saving time if that node is evaluating
more than one task for the job.

FileDependencies — This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

PathDependencies — This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

8-27

8 Programming Distributed Jobs

8-28

Passing M-Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each

time it starts. You can place the startup.m file in any directory on the
worker’'s MATLAB path, such as toolbox/distcomp/user.

Three additional M-files can initialize and clean a worker session as it begins
or completes evaluations of tasks for a job:

® jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

® taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

® taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever M-code you want the worker to
execute at the indicated times.

Alternatively, you can create your own versions of these M-files and pass
them to the job as part of the FileDependencies property, or include the
pathnames to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any
of these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker's MATLAB
installation.

For further details on these M-files, see the jobStartup, taskStartup, and
taskFinish reference pages.

Managing Objects

Objects that the client session uses to interact with the scheduler are only
references to data that is actually contained in the directory specified by

Using a Fully Supported Third-Party Scheduler

the DatalLocation property. After jobs and tasks are created, you can shut
down your client session, restart it, and your job will still be stored in that
remote location. You can find existing jobs using the Jobs property of the
recreated scheduler object.

The following sections describe how to access these objects and how to
permanently remove them:

e “What Happens When the Client Session Ends?” on page 8-29
® “Recovering Objects” on page 8-29
® “Destroying Jobs” on page 8-30

What Happens When the Client Session Ends?

When you close the client session of Parallel Computing Toolbox software,
all of the objects in the workspace are cleared. However, job and task data
remains in the directory identified by DataLocation. When the client session
ends, only its local reference objects are lost, not the data of the scheduler.

Therefore, if you have submitted your job to the scheduler job queue for
execution, you can quit your client session of MATLAB, and the job will be
executed by the scheduler. The scheduler maintains its job and task data.
You can retrieve the job results later in another client session.

Recovering Objects

A client session of Parallel Computing Toolbox software can access any of the
objects in the DataLocation, whether the current client session or another
client session created these objects.

You create scheduler objects in the client session by using the findResource
function.

sched = findResource('scheduler', ‘type', 'LSF');
set(sched, 'DataLocation', '/share/scratch/jobdata');

When you have access to the scheduler by the object sched, you can create

objects that reference all the data contained in the specified location for that
scheduler. All the job and task data contained in the scheduler data location

8-29

8 Programming Distributed Jobs

8-30

are accessible in the scheduler object’s Jobs property, which is an array of job
objects.

all _jobs = get(sched, 'Jobs')
You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a scheduler object
for a particular job identified by any of its properties, such as its State.

finished_jobs = findJob(sched, 'State', 'finished')

This command returns an array of job objects that reference all finished jobs
on the scheduler sched, whose data is found in the specified DataLocation.

Destroying Jobs

Jobs in the scheduler continue to exist even after they are finished. From
the command line in the MATLAB client session, you can call the destroy
function for any job object. If you destroy a job, you destroy all tasks contained
in that job. The job and task data is deleted from the DataLocation directory.

For example, find and destroy all finished jobs in your scheduler whose data
1s stored in a specific directory.

sched = findResource('scheduler', ‘name', 'LSF');
set(sched, 'DataLocation', '/share/scratch/jobdata');
finished_jobs = findJob(sched, 'State', 'finished');
destroy(finished_jobs);

clear finished_jobs

The destroy function in this example permanently removes from the
scheduler data those finished jobs whose data is in /apps/data/project_88.
The clear function removes the object references from the local MATLAB
client workspace.

Using the Generic Scheduler Interface

Using the Generic Scheduler Interface

In this section...

“Overview” on page 8-31

“MATLAB Client Submit Function” on page 8-32

“Example — Writing the Submit Function” on page 8-36

“MATLAB Worker Decode Function” on page 8-37

“Example — Writing the Decode Function” on page 8-39

“Example — Programming and Running a Job in the Client” on page 8-40
“Supplied Submit and Decode Functions” on page 8-45

“Managing Jobs” on page 8-46

“Summary” on page 8-49

Overview

Parallel Computing Toolbox software provides a generic interface that lets you
interact with third-party schedulers, or use your own scripts for distributing
tasks to other nodes on the cluster for evaluation.

Because each job in your application is comprised of several tasks, the
purpose of your scheduler is to allocate a cluster node for the evaluation of
each task, or to distribute each task to a cluster node. The scheduler starts
remote MATLAB worker sessions on the cluster nodes to evaluate individual
tasks of the job. To evaluate its task, a MATLAB worker session needs access
to certain information, such as where to find the job and task data. The
generic scheduler interface provides a means of getting tasks from your
Parallel Computing Toolbox client session to your scheduler and thereby

to your cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from
the client to the worker. The parameters can be passed any way you want to
transfer them, but because a particular one must be an environment variable,
the examples in this section pass all parameters as environment variables.

8-31

8 Programming Distributed Jobs

8-32

(lient node Worker node

MATLAB dlient Environment Environment y\ATIAB worker

variables variables
+ Submit
E function

Decode
function :

\ 4

»
>

A

Scheduler

»
>
»

Note Whereas a MathWorks job manager keeps MATLAB workers running
between tasks, a third-party scheduler runs MATLAB workers for only as
long as it takes each worker to evaluate its one task.

MATLAB Client Submit Function

When you submit a job to a scheduler, the function identified by the scheduler
object’s SubmitFcn property executes in the MATLAB client session. You

set the scheduler’s SubmitFcn property to identify the submit function and
any arguments you might want to send to it. For example, to use a submit
function called mysubmitfunc, you set the property with the command

set(sched, 'SubmitFcn', @mysubmitfunc)

where sched is the scheduler object in the client session, created with the
findResource function. In this case, the submit function gets called with its
three default arguments: scheduler, job, and properties object, in that order.
The function declaration line of the function might look like this:

function mysubmitfunc(scheduler, job, props)

Inside the function of this example, the three argument objects are known as
scheduler, job, and props

You can write a submit function that accepts more than the three default
arguments, and then pass those extra arguments by including them in the
definition of the SubmitFcn property.

Using the Generic Scheduler Interface

time_limit

testlocation =

set(sched,

In this example, the submit function requires five arguments: the three
defaults, along with the numeric value of time_1limit and the string value of
testlocation. The function’s declaration line might look like this:

function mysubmitfunc(scheduler,

The following discussion focuses primarily on the minimum requirements

= 300

'Plant30'

‘SubmitFcn', {@mysubmitfunc, time_limit, testlocation})

of the submit and decode functions.

This submit function has three main purposes:

¢ To identify the decode function that MATLAB workers run when they start

¢ To make information about job and task data locations available to the

workers via their decode function

¢ To instruct your scheduler how to start a MATLAB worker on the cluster

for each task of your job

(lient node
MATLAB client
Disiributed Environment variables
Computing job.SubmitFen
Toolbox MDCE_DECODE_FUNCTION
omit| Submit | | setenv | MDCESTORAGE CONSTRUCTOR
sSubmitT| ¢ ion MDCE_STORAGE_LOCATION
MDCE_JOB_LOCATION
MDCE_TASK_LOCATION

Yv

Scheduler

Identifying the Decode Function

The client’s submit function and the worker’s decode function work together
as a pair. Therefore, the submit function must identify its corresponding
decode function. The submit function does this by setting the environment

job, props, localtimeout, plant)

8-33

8 Programming Distributed Jobs

variable MDCE_DECODE_FUNCTION. The value of this variable is a string
1dentifying the name of the decode function on the path of the MATLAB
worker. Neither the decode function itself nor its name can be passed to the
worker in a job or task property; the file must already exist before the worker
starts. For more information on the decode function, see “MATLAB Worker
Decode Function” on page 8-37.

Passing Job and Task Data

The third input argument (after scheduler and job) to the submit function is
the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically
set by the toolbox so that you can program your submit function to forward
them to the worker nodes.

Property Name Description

StorageConstructor String. Used internally to indicate
that a file system is used to contain
job and task data.

StorageLocation String. Derived from the scheduler
Datalocation property.

JobLocation String. Indicates where this job’s
data is stored.

TaskLocations Cell array. Indicates where each
task’s data is stored. Each element
of this array is passed to a separate
worker.

NumberOfTasks Double. Indicates the number of
tasks in the job. You do not need to
pass this value to the worker, but
you can use it within your submit
function.

With these values passed into your submit function, the function can pass
them to the worker nodes by any of several means. However, because the

8-34

Using the Generic Scheduler Interface

name of the decode function must be passed as an environment variable, the
examples that follow pass all the other necessary property values also as
environment variables.

The submit function writes the values of these object properties out to
environment variables with the setenv function.

Defining Scheduler Command to Run MATLAB Workers

The submit function must define the command necessary for your scheduler
to start MATLAB workers. The actual command is specific to your scheduler
and network configuration. The commands for some popular schedulers are
listed in the following table. This table also indicates whether or not the
scheduler automatically passes environment variables with its submission. If
not, your command to the scheduler must accommodate these variables.

Passes Environment
Scheduler Scheduler Command | Variables

Condor® condor_submit Not by default.
Command can pass
all or specific variables.

LSF bsub Yes, by default.

PBS gsub Command must specify
which variables to pass.

Sun™ Grid Engine gsub Command must specify
which variables to pass.

Your submit function might also use some of these properties and others
when constructing and invoking your scheduler command. scheduler, job,
and props (so named only for this example) refer to the first three arguments
to the submit function.

Argument Object Property

scheduler MatlabCommandToRun
scheduler ClusterMatlabRoot

job MinimumNumberOfWorkers

8-35

8 Programming Distributed Jobs

Argument Object Property
job MaximumNumberOfWorkers
props NumberOfTasks

Example — Writing the Submit Function

The submit function in this example uses environment variables to pass the
necessary information to the worker nodes. Each step below indicates the
lines of code you add to your submit function.

1 Create the function declaration. There are three objects automatically
passed into the submit function as its first three input arguments: the
scheduler object, the job object, and the props object.

function mysubmitfunc(scheduler, job, props)

This example function uses only the three default arguments. You can
have additional arguments passed into your submit function, as discussed
in “MATLAB Client Submit Function” on page 8-32.

2 Identify the values you want to send to your environment variables. For
convenience, you define local variables for use in this function.

decodeFcn = 'mydecodefunc';

jobLocation = get(props, 'JobLocation');

taskLocations = get(props, 'TaskLocations'); %This is a cell array
storageLocation = get(props, 'StorageLocation');
storageConstructor = get(props, 'StorageConstructor');

The name of the decode function that must be available on the MATLAB
worker path is mydecodefunc.

3 Set the environment variables, other than the task locations. All the
MATLAB workers use these values when evaluating tasks of the job.

setenv('MDCE_DECODE_FUNCTION', decodeFcn);
setenv('MDCE_JOB_LOCATION', jobLocation);
setenv('MDCE_STORAGE_LOCATION', storagelLocation);
setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);

8-36

Using the Generic Scheduler Interface

Your submit function can use any names you choose for the environment
variables, with the exception of MDCE_DECODE_FUNCTION; the MATLAB
worker looks for its decode function identified by this variable. If you use
alternative names for the other environment variables, be sure that the
corresponding decode function also uses your alternative variable names.

4 Set the task-specific variables and scheduler commands. This is where you
instruct your scheduler to start MATLAB workers for each task.

for i = 1:props.NumberOfTasks
setenv('MDCE_TASK_LOCATION', taskLocations{i});
constructSchedulerCommand;

end

The line constructSchedulerCommand represents the code you write to
construct and execute your scheduler’s submit command. This command
is typically a string that combines the scheduler command with necessary
flags, arguments, and values derived from the values of your object
properties. This command is inside the for-loop so that your scheduler gets
a command to start a MATLAB worker on the cluster for each task.

Note If you are not familiar with your network scheduler, ask your system
administrator for help.

MATLAB Worker Decode Function

The sole purpose of the MATLAB worker’s decode function is to read certain
job and task information into the MATLAB worker session. This information
could be stored in disk files on the network, or it could be available as
environment variables on the worker node. Because the discussion of the
submit function illustrated only the usage of environment variables, so does
this discussion of the decode function.

When working with the decode function, you must be aware of the

e Name and location of the decode function itself

e Names of the environment variables this function must read

8-37

8 Programming Distributed Jobs

8-38

Worker node

Environment variables MATLAB worker

MDCE_DECODE_FUNCTION
MDCE_STORAGE_CONSTRUCTOR| getenv
MDCE_STORAGE_LOCATION
MDCE_JOB_LOCATION
MDCE_TASK_LOCATION

A

| Decode
"] function

Scheduler matlab...

Identifying File Name and Location

The client’s submit function and the worker’s decode function work together
as a pair. For more information on the submit function, see “MATLAB
Client Submit Function” on page 8-32. The decode function on the worker is
identified by the submit function as the value of the environment variable
MDCE_DECODE_FUNCTION. The environment variable must be copied from the
client node to the worker node. Your scheduler might perform this task for
you automatically; if it does not, you must arrange for this copying.

The value of the environment variable MDCE_DECODE_FUNCTION defines the
filename of the decode function, but not its location. The file cannot be passed
as part of the job PathDependencies or FileDependencies property, because
the function runs in the MATLAB worker before that session has access to
the job. Therefore, the file location must be available to the MATLAB worker
as that worker starts.

Note The decode function must be available on the MATLAB worker’s path.

You can get the decode function on the worker’s path by either moving the file
into a directory on the path (for example, matlabroot/toolbox/local), or by
having the scheduler use cd in its command so that it starts the MATLAB
worker from within the directory that contains the decode function.

Using the Generic Scheduler Interface

In practice, the decode function might be identical for all workers on the
cluster. In this case, all workers can use the same decode function file if it is
accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by
the MDCE_DECODE_FUNCTION environment variable. This decode function runs
before the worker does any processing of its task.

Reading the Job and Task Information
When the environment variables have been transferred from the client to

the worker nodes (either by the scheduler or some other means), the decode
function of the MATLAB worker can read them with the getenv function.

With those values from the environment variables, the decode function must
set the appropriate property values of the object that is its argument. The
property values that must be set are the same as those in the corresponding
submit function, except that instead of the cell array TaskLocations, each
worker has only the individual string TaskLocation, which is one element of
the TaskLocations cell array. Therefore, the properties you must set within
the decode function on its argument object are as follows:

® StorageConstructor
® StoragelLocation

e JobLocation

® TaskLocation

Example — Writing the Decode Function

The decode function must read four environment variables and use their
values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object props.

function props = workerDecodeFunc(props)

% Read the environment variables:

storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
storagelLocation = getenv('MDCE_STORAGE_LOCATION');
jobLocation = getenv('MDCE_JOB_LOCATION');

8-39

8 Programming Distributed Jobs

8-40

taskLocation = getenv('MDCE_TASK LOCATION');

o°

% Set props object properties from the local variables:
set(props, 'StorageConstructor', storageConstructor);
set(props, 'StoragelLocation', storagelLocation);
set(props, 'dJobLocation', jobLocation);

set(props, 'TaskLocation', taskLocation);

When the object is returned from the decode function to the MATLAB worker
session, its values are used internally for managing job and task data.

Example — Programming and Running a Job in the
Client

1. Create a Scheduler Object

You use the findResource function to create an object representing the
scheduler in your local MATLAB client session.

You can specify 'generic' as the name for findResource to search for.
(Any scheduler name starting with the string 'generic' creates a generic
scheduler object.)

sched = findResource('scheduler', 'type', 'generic')

Generic schedulers must use a shared file system for workers to access job
and task data. Set the DataLocation and HasSharedFilesystem properties
to specify where the job data is stored and that the workers should access job
data directly in a shared file system.

set(sched, 'DatalLocation', '\\share\scratch\jobdata')
set(sched, 'HasSharedFilesystem', true)

Note All nodes require access to the directory specified in the scheduler
object’s DataLocation directory. See the DataLocation reference page for
information on setting this property for a mixed-platform environment.

Using the Generic Scheduler Interface

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler, which might not be accessible

to the worker nodes.

If MATLAB is not on the worker’s system path, set the ClusterMatlabRoot
property to specify where the workers are to find the MATLAB installation.

set(sched,

‘ClusterMatlabRoot’,

"\\apps\matlab\')

You can look at all the property settings on the scheduler object. If no jobs
are in the DatalLocation directory, the Jobs property is a 0-by-1 array. All
settable property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the object
from the client workspace with delete or clear all.

get(sched)

Configuration:
Type:

DatalLocation:
HasSharedFilesystem:
Jobs:
ClusterMatlabRoot:
ClusterOsType:
UserData:
ClusterSize:
MatlabCommandToRun:
SubmitFcn:
ParallelSubmitFcn:

‘generic’

"\\share\scratch\jobdata'

1
[0x1 double]
"\\apps\matlab\'
'pc’

[]

Inf

‘'worker'

[]

[]

You must set the SubmitFcn property to specify the submit function for this

scheduler.

set(sched,

'SubmitFcn', @mysubmitfunc)

With the scheduler object and the user-defined submit and decode functions
defined, programming and running a job is now similar to doing so with a job
manager or any other type of scheduler.

8-41

8 Programming Distributed Jobs

8-42

2. Create a Job

You create a job with the createJdob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DatalLocation property.

j = createdob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Configuration: "'
Name: 'Job1'
ID: 1
UserName: 'neo'’
Tag: ''

State: 'pending'
CreateTime: 'Fri Jan 20 16:15:47 EDT 2006'
SubmitTime: '
StartTime: '
FinishTime: "'
Tasks: [0x1 double]
FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}
JobData: []
Parent: [1x1 distcomp.genericscheduler]
UserData: []

Note Properties of a particular job or task should be set from only one
computer at a time.

This generic scheduler job has somewhat different properties than a job that
uses a job manager. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

Using the Generic Scheduler Interface

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched)
Configuration: "'
Type: 'generic'
DataLocation: '\\share\scratch\jobdata'
HasSharedFilesystem: 1
Jobs: [1x1 distcomp.simplejob]
ClusterMatlabRoot: '\\apps\matlab\'
ClusterOsType: 'pc'
UserData: []
ClusterSize: Inf
MatlabCommandToRun: 'worker'
SubmitFcn: @mysubmitfunc
ParallelSubmitFcn: []

3. Create Tasks

After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are identical except for different arguments or data.
In this example, each task generates a 3-by-3 matrix of random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.
get(j, ' 'Tasks')

ans =
distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by

providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, erand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

8-43

8 Programming Distributed Jobs

8-44

In this case, T 1s a 5-by-1 matrix of task objects.

4, Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before
you continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)

The default state to wait for is finished or failed. This function pauses
MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job’s Results

The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);
Display the results from each task.

results{1:5}

0.9501 .4860 0.4565
0.2311 .8913 .0185
0.6068 0.7621 0.8214

o

o
o

o

. 4447 .9218 .4057
.6154 .7382 .9355
0.7919 0.1763 0.9169

o
o

o
o
o

0.4103 .3529 0.1389
0.8936 0.8132 0.2028

o

Using the Generic Scheduler Interface

0.0579

0.6038
0.2722
0.1988

0.8462
.5252
0.2026

o

o o

0.
0.
0.

.0099

.0153
.7468
.4451

6721
8381
0196

0.1987

0.9318
0.4660
0.4186

0.6813
.3795
0.8318

o

Supplied Submit and Decode Functions

There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

In this directory are subdirectories for each of several types of

scheduler, containing wrappers, submit functions, and decode

functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename

Description

pbsSubmitFcn.m

Submit function for a distributed job

pbsDecodeFunc.m

Decode function for a distributed job

pbsParallelSubmitFcn.m

Submit function for a parallel job

pbsParallelDecode.m

Decode function for a parallel job

pbsWrapper.sh

Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh

Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

8-45

8 Programming Distributed Jobs

8-46

At the time of publication, there are directories for PBS schedulers (pbs),
Platform LSF schedulers (1sf), generic UNIX-based scripts (ssh), Sun

Grid Engine (sge), and mpiexec on Microsoft Windows operating systems
(winmpiexec). In addition, the pbs and 1sf directories have subdirectories
called nonshared, which contain scripts for use when there is a nonshared file
system between the client and cluster computers. Each of these subdirectories
contains a file called README, which provides instruction on how to use its
scripts.

As more files or solutions might become available at any time, visit

the support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

Managing Jobs

While you can use the get, cancel, and destroy methods on jobs that use
the generic scheduler interface, by default these methods access or affect only
the job data where it is stored on disk. To cancel or destroy a job or task
that is currently running or queued, you must provide instructions to the
scheduler directing it what to do and when to do it. To accomplish this, the
toolbox provides a means of saving data associated with each job or task from
the scheduler, and a set of properties to define instructions for the scheduler
upon each cancel or destroy request.

Saving Job Scheduler Data

The first requirement for job management is to identify the job from the
scheduler’s perspective. When you submit a job to the scheduler, the
command to do the submission in your submit function can return from the
scheduler some data about the job. This data typically includes a job ID. By
storing that job ID with the job, you can later refer to the job by this ID when
you send management commands to the scheduler. Similarly, you can store
information, such as an ID, for each task. The toolbox function that stores
this scheduler data is setJobSchedulerData.

If your scheduler accommodates submission of entire jobs (collection of tasks)
in a single command, you might get back data for the whole job and/or for
each task. Part of your submit function might be structured like this:

http://www.mathworks.com/support/product/product.html?product=DM

Using the Generic Scheduler Interface

for ii = 1:props.NumberOfTasks
define scheduler command per task
end
submit job to scheduler
data_array = parse data returned from scheduler %possibly NumberOfTasks-by-2 matrix
setJobSchedulerData(scheduler, job, data_array)

If your scheduler accepts only submissions of individual tasks, you might get
return data pertaining to only each individual tasks. In this case, your submit
function might have code structured like this:

for ii = 1:props.NumberOfTasks
submit task to scheduler
%Per-task settings:

data_array(1,ii) = ... parse string returned from scheduler
data_array(2,ii) = ... save ID returned from scheduler
etc

end

setJobSchedulerData(scheduler, job, data_array)

Defining Scheduler Commands in User Functions

With the scheduler data (such as the scheduler’s ID for the job or task) now
stored on disk along with the rest of the job data, you can write code to control
what the scheduler should do when that particular job or task is canceled

or destroyed.

For example, you might create these four functions:

® myCanceldob.m

® myDestroydob.m

® myCancelTask.m

® myDestroyTask.m

Your myCanceldob.m function defines what you want to communicate to your
scheduler in the event that you use the cancel function on your job from
the MATLAB client. The toolbox takes care of the job state and any data

management with the job data on disk, so your myCancelJob.m function needs
to deal only with the part of the job currently running or queued with the

8-47

8 Programming Distributed Jobs

scheduler. The toolbox function that retrieves scheduler data from the job is
getJobSchedulerData. Your cancel function might be structured something
like this:

function myCancelTask(sched, job)

array_data = getJobSchedulerData(sched, job)

job_id = array_data(...) % Extract the ID from the data, depending on how
% it was stored in the submit function above.

command to scheduler canceling job job_id

In a similar way, you can define what do to for destroying a job, and what to
do for canceling and destroying tasks.

Destroying or Canceling a Running Job

After your functions are written, you set the appropriate properties of the
scheduler object with handles to your functions. The corresponding scheduler
properties are:

® CancelJobFcn

® DestroydJobFcn
® CancelTaskFcn
® DestroyTaskFcn

You can set the properties in the Configurations Manager for your scheduler,
or on the command line:

schdlr = findResource(scheduler, 'type', 'generic');
% set required properties

set(schdlr, 'CanceldobFcn', @myCanceldob)
set(schdlr, 'DestroyJobFcn', @myDestroydJob)
set(schdlr, 'CancelTaskFcn', @myCancelTask)

set(schdlr, 'DestroyTaskFcn', @myDestroyTask)

Continue with job creation and submission as usual.
j1 = createdob(schdlr);
for ii = 1:n
t(ii) = createTask(j1,...)

8-48

Using the Generic Scheduler Interface

end
submit(j1)

While it is running or queued, you can cancel or destroy the job or a task.

This command cancels the task and moves it to the finished state, and
triggers execution of myCancelTask, which sends the appropriate commands
to the scheduler:

cancel(t(4))

This command deletes job data for j1, and triggers execution of myDestroyJob,
which sends the appropriate commands to the scheduler:

destroy(j1)

Getting State Information About a Job or Task

When using a third-party scheduler, it is possible that the scheduler itself can
have more up-to-date information about your jobs than what is available to
the toolbox from the job storage location. To retrieve that information from
the scheduler, you can write a function to do that, and set the value of the
GetJobStateFcn property as a handle to your function.

Whenever you use a toolbox function such as get, waitForState, etc., that
accesses the state of a job on the generic scheduler, after retrieving the state
from storage, the toolbox runs the function specified by the GetJobStateFcn
property, and returns its result in place of the stored state. The function
you write for this purpose must return a valid string value for the State of
a job object.

Summary

The following list summarizes the sequence of events that occur when running
a job that uses the generic scheduler interface:

1 Provide a submit function and a decode function. Be sure the decode
function is on all the MATLAB workers’ paths.

The following steps occur in the MATLAB client session:

8-49

8 Programming Distributed Jobs

8-50

2 Define the SubmitFcn property of your scheduler object to point to the
submit function.

3 Send your job to the scheduler.

submit (job)

4 The client session runs the submit function.

5 The submit function sets environment variables with values derived from
its arguments.

6 The submit function makes calls to the scheduler — generally, a call for
each task (with environment variables identified explicitly, if necessary).

The following step occurs in your network:

7 For each task, the scheduler starts a MATLAB worker session on a cluster
node.

The following steps occur in each MATLAB worker session:

8 The MATLAB worker automatically runs the decode function, finding it
on the path.

9 The decode function reads the pertinent environment variables.

10 The decode function sets the properties of its argument object with values
from the environment variables.

11 The MATLAB worker uses these object property values in processing its
task without your further intervention.

Programming Parallel Jobs

Parallel jobs are those in which the workers (or /abs) can communicate
with each other during the evaluation of their tasks. The following sections
describe how to program parallel jobs:

¢ “Introduction” on page 9-2
e “Using a Supported Scheduler” on page 9-4
e “Using the Generic Scheduler Interface” on page 9-8

¢ “Further Notes on Parallel Jobs” on page 9-11

9 Programming Parallel Jobs

9-2

Introduction

A parallel job consists of only a single task that runs simultaneously on
several workers, usually with different data. More specifically, the task is
duplicated on each worker, so each worker can perform the task on a different
set of data, or on a particular segment of a large data set. The workers can
communicate with each other as each executes its task. In this configuration,

workers are referred to as labs.

In principle, creating and running parallel jobs is similar to programming

distributed jobs:

1 Find a scheduler.

2 Create a parallel job.

3 Create a task.

4 Submit the job for running.

5 Retrieve the results.

The differences between distributed jobs and parallel jobs are summarized

in the following table.

Distributed Job

Parallel Job

MATLAB sessions, called workers,
perform the tasks but do not
communicate with each other.

MATLAB sessions, called labs, can
communicate with each other during
the running of their tasks.

You define any number of tasks in
a job.

You define only one task in a job.
Duplicates of that task run on all
labs running the parallel job.

Tasks need not run simultaneously.

Tasks are distributed to workers as
the workers become available, so a
worker can perform several of the
tasks in a job.

Tasks run simultaneously, so you
can run the job only on as many labs
as are available at run time. The
start of the job might be delayed
until the required number of labs is
available.

Introduction

A parallel job has only one task that runs simultaneously on every lab. The
function that the task runs can take advantage of a lab’s awareness of how
many labs are running the job, which lab this is among those running the job,
and the features that allow labs to communicate with each other.

9-3

9 Programming Parallel Jobs

Using a Supported Scheduler

In this section...

“Schedulers and Conditions” on page 9-4

“Coding the Task Function” on page 9-4

“Coding in the Client” on page 9-5

Schedulers and Conditions

You can run a parallel job using any type of scheduler. This section illustrates
how to program parallel jobs for supported schedulers (job manager, local
scheduler, Microsoft Windows HPC Server (including CCS), Platform LSF,
PBS Pro, TORQUE, or mpiexec).

To use this supported interface for parallel jobs, the following conditions
must apply:
® You must have a shared file system between client and cluster machines

® You must be able to submit jobs directly to the scheduler from the client
machine

Note If all these conditions are not met, you must use the generic scheduler
interface with any third-party scheduler running a parallel job, including
pmode, matlabpool, spmd, and parfor. See “Using the Generic Scheduler
Interface” on page 9-8.

Coding the Task Function

In this section a simple example illustrates the basic principles of
programming a parallel job with a third-party scheduler. In this example,
the lab whose labindex value is 1 creates a magic square comprised of a
number of rows and columns that is equal to the number of labs running the
job (numlabs). In this case, four labs run a parallel job with a 4-by-4 magic
square. The first lab broadcasts the matrix with labBroadcast to all the
other labs , each of which calculates the sum of one column of the matrix. All

Using a Supported Scheduler

of these column sums are combined with the gplus function to calculate the
total sum of the elements of the original magic square.

The function for this example is shown below.

function total_sum = colsum
if labindex ==
% Send magic square to other labs
A = labBroadcast(1,magic(numlabs))
else
% Receive broadcast on other labs
A = labBroadcast(1)
end

% Calculate sum of column identified by labindex for this lab
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs
total_sum = gplus(column_sum)

This function is saved as the file colsum.m on the path of the MATLAB client.
It will be sent to each lab by the job’s FileDependencies property.

While this example has one lab create the magic square and broadcast it

to the other labs, there are alternative methods of getting data to the labs.
Each lab could create the matrix for itself. Alternatively, each lab could read
its part of the data from a file on disk, the data could be passed in as an
argument to the task function, or the data could be sent in a file contained in
the job’s FileDependencies property. The solution to choose depends on your
network configuration and the nature of the data.

Coding in the Client

As with distributed jobs, you find a scheduler and create a scheduler object in
your MATLAB client by using the findResource function. There are slight
differences in the arguments for findResource, depending on the scheduler
you use, but using configurations to define as many properties as possible
minimizes coding differences between the scheduler types.

You can create and configure the scheduler object with this code:

9 Programming Parallel Jobs

9-6

sched = findResource('scheduler', 'configuration', myconfig)

where myconfig is the name of a user-defined configuration for the type of
scheduler you are using. Any required differences for various scheduling
options are controlled in the configuration. You can have one or more
separate configurations for each type of scheduler. For complete details, see
“Programming with User Configurations” on page 6-16. Create or modify
configurations according to the instructions of your system administrator.

When your scheduler object is defined, you create the job object with the
createParalleldob function.

pjob = createParalleldob(sched);

The function file colsum.m (created in “Coding the Task Function” on page
9-4) is on the MATLAB client path, but it has to be made available to the labs.
One way to do this is with the job’s FileDependencies property, which can be
set in the configuration you used, or by:

set(pjob, 'FileDependencies', {'colsum.m'})

Here you might also set other properties on the job, for example, setting the
number of workers to use. Again, configurations might be useful in your
particular situation, especially if most of your jobs require many of the same
property settings. To run this example on four labs, you can established this
in the configuration, or by the following client code:

set(pjob, 'MaximumNumberOfWorkers', 4)
set(pjob, 'MinimumNumberOfWorkers', 4)

You create the job’s one task with the usual createTask function. In this
example, the task returns only one argument from each lab, and there are no
input arguments to the colsum function.

t = createTask(pjob, @colsum, 1, {})

Use submit to run the job.

submit (pjob)

Using a Supported Scheduler

Make the MATLAB client wait for the job to finish before collecting the
results. The results consist of one value from each lab. The gplus function in
the task shares data between the labs, so that each lab has the same result.

waitForState(pjob)
results = getAllOutputArguments(pjob)
results =

[136]

[136]

[136]

[136]

9 Programming Parallel Jobs

Using the Generic Scheduler Interface

In this section...

“Introduction” on page 9-8

“Coding in the Client” on page 9-8

Introduction

This section discusses programming parallel jobs using the generic scheduler
interface. This interface lets you execute jobs on your cluster with any
scheduler you might have.

The principles of using the generic scheduler interface for parallel jobs are the
same as those for distributed jobs. The overview of the concepts and details of
submit and decode functions for distributed jobs are discussed fully in “Using
the Generic Scheduler Interface” on page 8-31 in the chapter on Programming
Distributed Jobs.

Coding in the Client

Configuring the Scheduler Object

Coding a parallel job for a generic scheduler involves the same procedure
as coding a distributed job.

1 Create an object representing your scheduler with findResource.

2 Set the appropriate properties on the scheduler object if they are not
defined in the configuration. Because the scheduler itself is often
common to many users and applications, it is probably best to use a
configuration for programming these properties. See “Programming with
User Configurations” on page 6-16.

Among the properties required for a parallel job is ParallelSubmitFcn.
The toolbox comes with several submit functions for various schedulers
and platforms; see the following section, “Supplied Submit and Decode

Functions” on page 9-9.

Using the Generic Scheduler Interface

3 Use createParalleldob to create a parallel job object for your scheduler.

4 Create a task, run the job, and retrieve the results as usual.

Supplied Submit and Decode Functions

There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the directory

matlabroot/toolbox/distcomp/examples/integration

In this directory are subdirectories for each of several types of

scheduler, containing wrappers, submit functions, and decode

functions for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs contains the
following files for use with a PBS scheduler:

Filename Description
pbsSubmitFcn.m Submit function for a distributed job
pbsDecodeFunc.m Decode function for a distributed job

pbsParallelSubmitFcn.m | Submit function for a parallel job

pbsParallelDecode.m Decode function for a parallel job

pbsWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

pbsParallelWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

At the time of publication, there are directories for PBS schedulers (pbs),
Platform LSF schedulers (1sf), generic UNIX-based scripts (ssh), Sun

Grid Engine (sge), and mpiexec on Microsoft Windows operating systems
(winmpiexec). In addition, the pbs and 1sf directories have subdirectories
called nonshared, which contain scripts for use when there is a nonshared file

9-9

9 Programming Parallel Jobs

9-10

system between the client and cluster computers. Each of these subdirectories
contains a file called README, which provides instruction on how to use its
scripts.

As more files or solutions might become available at any time, visit

the Support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This page also provides contact information in case you have any questions.

http://www.mathworks.com/support/product/product.html?product=DM

Further Notes on Parallel Jobs

Further Notes on Parallel Jobs

In this section...

“Number of Tasks in a Parallel Job” on page 9-11

“Avoiding Deadlock and Other Dependency Errors” on page 9-11

Number of Tasks in a Parallel Job

Although you create only one task for a parallel job, the system copies this
task for each worker that runs the job. For example, if a parallel job runs on
four workers (labs), the Tasks property of the job contains four task objects.
The first task in the job’s Tasks property corresponds to the task run by the
lab whose labindex is 1, and so on, so that the ID property for the task object
and labindex for the lab that ran that task have the same value. Therefore,
the sequence of results returned by the getAllOutputArguments function
corresponds to the value of labindex and to the order of tasks in the job’s
Tasks property.

Avoiding Deadlock and Other Dependency Errors

Because code running in one lab for a parallel job can block execution until
some corresponding code executes on another lab, the potential for deadlock
exists in parallel jobs. This is most likely to occur when transferring data
between labs or when making code dependent upon the labindex in an if
statement. Some examples illustrate common pitfalls.

Suppose you have a codistributed array D, and you want to use the gather
function to assemble the entire array in the workspace of a single lab.

if labindex ==
assembled = gather(D);
end

The reason this fails is because the gather function requires communication
between all the labs across which the array is distributed. When the if
statement limits execution to a single lab, the other labs required for
execution of the function are not executing the statement. As an alternative,
you can use gather itself to collect the data into the workspace of a single lab:
assembled = gather(D, 1).

9-11

9 Programming Parallel Jobs

9-12

In another example, suppose you want to transfer data from every lab to the
next lab on the right (defined as the next higher 1labindex). First you define
for each lab what the labs on the left and right are.

from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right mod (labindex, numlabs) + 1;

Then try to pass data around the ring.

labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);

The reason this code might fail is because, depending on the size of the data
being transferred, the 1labSend function can block execution in a lab until the
corresponding receiving lab executes its 1labReceive function. In this case, all
the labs are attempting to send at the same time, and none are attempting to
receive while 1labSend has them blocked. In other words, none of the labs get
to their 1labReceive statements because they are all blocked at the 1abSend
statement. To avoid this particular problem, you can use the 1labSendReceive
function.

Object Reference

Data Objects (p. 10-2)
Scheduler Objects (p. 10-2)

Job Objects (p. 10-3)
Task Objects (p. 10-3)
Worker Objects (p. 10-3)

Representing data on multiple labs

Representing job manager, local
scheduler, or third-party scheduler

Representing different types of jobs
Representing different types of tasks

Representing MATLAB worker
sessions

1 0 Object Reference

Data Objects

codistributed

codistributorld

codistributor2dbc

Composite

distributed

Scheduler Obijects

cesscheduler

genericscheduler
jobmanager

localscheduler

Isfscheduler

mpiexec

pbsproscheduler

torquescheduler

Access data of arrays distributed
among workers in MATLAB pool

1-D distribution scheme for
codistributed array

2-D block-cyclic distribution scheme
for codistributed array

Access nondistributed data on
multiple labs from client

Access data of distributed arrays
from client

Access Microsoft Windows HPC
Server scheduler

Access generic scheduler
Control job queue and execution

Access local scheduler on client
machine

Access Platform LSF scheduler

Directly access mpiexec for job
distribution

Access PBS Pro scheduler
Access TORQUE scheduler

Job Obijects

Job Obijects
job

matlabpooljob

paralleljob

simplejob
simplematlabpooljob

simpleparalleljob

Task Obijects

simpletask

task

Worker Objects

worker

Define job behavior and properties
when using job manager

Define MATLAB pool job behavior
and properties when using job
manager

Define parallel job behavior and
properties when using job manager

Define job behavior and properties
when using local or third-party
scheduler

Define MATLAB pool job behavior
and properties when using local or
third-party scheduler

Define parallel job behavior and
properties when using local or
third-party scheduler

Define task behavior and properties
when using local or third-party
scheduler

Define task behavior and properties
when using job manager

Access information about MATLAB
worker session

10-3

1 0 Object Reference

10-4

Objects — Alphabetical List

ccsscheduler

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

11-2

Access Microsoft Windows HPC Server scheduler

findResource

Parent None

Children simplejob and simpleparalleljob objects

A ccsscheduler object provides access to your network’s Windows HPC
Server (including CCS) scheduler, which controls the job queue, and
distributes job tasks to workers or labs for execution.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

ClusterMatlabRoot
ClusterOsType

ClusterSize

ClusterVersion

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

Number of workers available to
scheduler

Version of HPC Server scheduler

ccsscheduler

Configuration Specify configuration to apply to
object or toolbox function

DatalLocation Specify directory where job data
1s stored

HasSharedFilesystem Specify whether nodes share data
location

JobDescriptionFile Name of XML job description
file for Microsoft Windows HPC
Server scheduler

Jobs Jobs contained in job manager
service or in scheduler’s data
location

JobTemplate Name of job template for HPC
Server 2008 scheduler

SchedulerHostname Name of host running Microsoft
Windows HPC Server scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

UseSOAJobSubmission Allow service-oriented
architecture (SOA) submission on
HPC Server 2008 cluster

See Also genericscheduler, jobmanager, 1sfscheduler, mpiexec,

pbsproscheduler, torquescheduler

11-3

codistributed

Purpose Access data of arrays distributed among workers in MATLAB pool
Constructor codistributed, codistributed.build

Description Data of distributed arrays that exist on the labs are accessible from the
other labs as codistributed array objects.

Codistributed arrays on labs that you create inside spmd statements can
be accessed via distributed arrays on the client.

Methods codistributed.cell Create codistributed cell array
codistributed.colon Distributed colon operation
codistributed.eye Create codistributed identity

matrix
codistributed.false Create codistributed false array
codistributed.Inf Create codistributed array of Inf
values
codistributed.NaN Create codistributed array of
Not-a-Number values
codistributed.ones Create codistributed array of ones
codistributed.rand Create codistributed array

of uniformly distributed
pseudo-random numbers

codistributed.randn Create codistributed array of
normally distributed random
values

codistributed.spalloc Allocate space for sparse

codistributed matrix

codistributed.speye Create codistributed sparse
identity matrix

114

codistributed

codistributed.sprand

codistributed.sprandn

codistributed.true

codistributed.zeros

gather

getCodistributor

getLocalPart

isa

iscodistributed

redistribute

sparse

Create codistributed sparse
array of uniformly distributed
pseudo-random values

Create codistributed sparse
array of uniformly distributed
pseudo-random values

Create codistributed true array

Create codistributed array of
Zeros

Transfer distributed array data
to local workspace

Codistributor object for existing
codistributed array

Local portion of codistributed
array

True if object is of specified class
True for codistributed array

Redistribute codistributed array
with another distribution scheme

Create sparse distributed or
codistributed matrix

11-5

codistributorid

11-6

Purpose
Constructor

Description

Methods

Properties

1-D distribution scheme for codistributed array
codistributorid

A codistributorld object defines the 1-D distribution scheme for a
codistributed array. The 1-D codistributor distributes arrays along a
single specified dimension, the distribution dimension, in a noncyclic,
partitioned manner.

codistributorid.defaultPartition
Default partition for codistributed

array
globalIndices Global indices for local part of
codistributed array
isComplete True if codistributor object is
complete
Dimension Distributed dimension of

codistributorld object

Partition Partition scheme of
codistributorld object

codistributor2dbc

Purpose
Constructor

Description

Methods

Properties

2-D block-cyclic distribution scheme for codistributed array
codistributor2dbc

A codistributor2dbc object defines the 2-D block-cyclic distribution
scheme for a codistributed array. The 2D block-cyclic codistributor
can only distribute two-dimensional matrices. It distributes matrices
along two subscripts over a rectangular computational grid of labs in

a blocked, cyclic manner. The parallel matrix computation software
library called ScaLAPACK uses the 2D block-cyclic codistributor.

codistributor2dbc.defaultLabGrid

Default computational grid for
2-D block-cyclic distributed
arrays

globalIndices Global indices for local part of
codistributed array

isComplete True if codistributor object is
complete

BlockSize Block size of codistributor2dbc
object
codistributor2dbc.defaultBlockSize

Default block size for
codistributor2dbc distribution

scheme

LabGrid Lab grid of codistributor2dbc
object

Orientation Orientation of codistributor2dbc
object

11-7

Composite

Purpose
Constructor

Description

Methods

11-8

Access nondistributed data on multiple labs from client
Composite

Variables that exist on the labs running an spmd statement are
accessible on the client as a Composite object. A Composite resembles a
cell array with one element for each lab. So for Composite C:

C{1} represents value of C on lab1
C{2} represents value of C on lab2
etc.

spmd statements create Composites automatically, which you can
access after the statement completes. You can also create a Composite
explicitly with the Composite function.

exist Check whether Composite 1s
defined on labs

subsasgn Subscripted assignment for
Composite

subsref Subscripted reference for
Composite

Other methods of a Composite object behave similarly to these MATLAB
array functions:

disp, display Display Composite

end Indicate last Composite index

isempty Determine whether Composite is empty
length Length of Composite

ndims Number of Composite dimensions

Composite

numel Number of elements in Composite

size Composite dimensions

11-9

distributed

Purpose
Constructor

Description

Methods

11-10

Access data of distributed arrays from client
distributed

Data of distributed arrays that exist on the labs are accessible on the
client as a distributed array. A distributed array resembles a normal
array in the way you access and manipulate its elements, but none of
its data exists on the client.

Codistributed arrays that you create inside spmd statements are
accessible via distributed arrays on the client. You can also create a
distributed array explicitly on the client with the distributed function.

distributed.cell Create distributed cell array

distributed.eye Create distributed identity
matrix

distributed.false Create distributed false array

distributed.Inf Create distributed array of Inf
values

distributed.NaN Create distributed array of
Not-a-Number values

distributed.ones Create distributed array of ones

distributed.rand Create distributed array

of uniformly distributed
pseudo-random numbers

distributed.randn Create distributed array of
normally distributed random
values

distributed.spalloc Allocate space for sparse

distributed matrix

distributed

distributed.speye

distributed.sprand

distributed.sprandn

distributed.true
distributed.zeros

gather

isdistributed

sparse

Create distributed sparse identity
matrix

Create distributed sparse
array of uniformly distributed
pseudo-random values

Create distributed sparse
array of normally distributed
pseudo-random values

Create distributed true array
Create distributed array of zeros

Transfer distributed array data
to local workspace

True for distributed array

Create sparse distributed or
codistributed matrix

11-11

genericscheduler

Purpose Access generic scheduler

Constructor findResource

Container Parent None

Hierarchy Children = simplejob and simpleparalleljob objects

Description A genericscheduler object provides access to your network’s scheduler,
which distributes job tasks to workers or labs for execution. The generic
scheduler interface requires use of the M-code submit function on the
client and the M-code decode function on the worker node.

Methods createdob Create job object in scheduler and
client
createMatlabPoolJob Create MATLAB pool job
createParalleldob Create parallel job object
findJob Find job objects stored in
scheduler
getJobSchedulerData Get specific user data for job on

generic scheduler

setJobSchedulerData Set specific user data for job on
generic scheduler

Properties CancelJobFcn Specify function to run when
canceling job on generic scheduler
CancelTaskFcn Specify function to run when
canceling task on generic
scheduler

11-12

genericscheduler

ClusterMatlabRoot
ClusterOsType

ClusterSize

Configuration

DatalLocation

DestroydJobFcn

DestroyTaskFcn

GetJobStateFcn

HasSharedFilesystem

Jobs

MatlabCommandToRun

ParallelSubmitFcn

SubmitFcn

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

Specify directory where job data
1s stored

Specify function to run when
destroying job on generic
scheduler

Specify function to run when
destroying task on generic
scheduler

Specify function to run when
querying job state on generic
scheduler

Specify whether nodes share data
location

Jobs contained in job manager
service or in scheduler’s data
location

MATLAB command that generic
scheduler runs to start lab

Specify function to run when
parallel job submitted to generic
scheduler

Specify function to run when job
submitted to generic scheduler

11-13

genericscheduler

Type Type of scheduler object
UserData Specify data to associate with
object
See Also ccsscheduler, jobmanager, 1sfscheduler, mpiexec,

pbsproscheduler, torquescheduler

11-14

Purpose

Constructor

Container
Hierarchy

Description

Methods

Define job behavior and properties when using job manager

createdob

Parent jobmanager object
Children task objects

A job object contains all the tasks that define what each worker does
as part of the complete job execution. A job object is used only with a

job manager as scheduler.

cancel
createTask

destroy

diary

findTask

getAllOutputArguments

load

submit

wait

waitForState

Cancel job or task
Create new task in job

Remove job or task object from
parent and memory

Display or save Command
Window text of batch job

Task objects belonging to job
object

Output arguments from
evaluation of all tasks in job
object

Load workspace variables from
batch job

Queue job in scheduler

Wait for job to finish or change
state

Wait for object to change state

11-15

Properties

11-16

Configuration

CreateTime

FileDependencies

FinishedFcn

FinishTime
ID
JobData

MaximumNumberOfWorkers

MinimumNumberOfWorkers

Name

Parent

PathDependencies

QueuedFcn

RestartWorker

RunningFcn

StartTime

Specify configuration to apply to
object or toolbox function

When task or job was created

Directories and files that worker
can access

Specify callback to execute after
task or job runs

When task or job finished
Object identifier

Data made available to all
workers for job’s tasks

Specify maximum number of
workers to perform job tasks

Specify minimum number of
workers to perform job tasks

Name of job manager, job, or
worker object

Parent object of job or task

Specify directories to add to
MATLAB worker path

Specify M-file function to execute
when job is submitted to job
manager queue

Specify whether to restart
MATLAB workers before
evaluating job tasks

Specify M-file function to execute
when job or task starts running

When job or task started

job

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job

See Also paralleljob, simplejob, simpleparalleljob

11-17

jobmanager

Purpose Control job queue and execution

Constructor findResource

Container Parent None

Hierarchy Children job, paralleljob, and worker objects

Description A jobmanager object provides access to the job manager, which controls
the job queue, distributes job tasks to workers or labs for execution, and
maintains job results. The job manager is provided with the MATLAB
Distributed Computing Server product, and its use as a scheduler is

optional.
Methods createJob Create job object in scheduler and

client

createMatlabPoolJob Create MATLAB pool job

createParalleldob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in
scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager

11-18

jobmanager

Properties

BusyWorkers

ClusterOsType

ClusterSize

Configuration

HostAddress

HostName

IdleWorkers

Jobs

Name

NumberOfBusyWorkers

NumberOfIdleWorkers

State

Type

UserData

Workers currently running tasks

Specify operating system of nodes
on which scheduler will start
workers

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

IP address of host running job
manager or worker session

Name of host running job
manager or worker session

Idle workers available to run
tasks

Jobs contained in job manager
service or in scheduler’s data
location

Name of job manager, job, or
worker object

Number of workers currently
running tasks

Number of idle workers available
to run tasks

Current state of task, job, job
manager, or worker

Type of scheduler object

Specify data to associate with
object

11-19

jobmanager

See Also ccsscheduler, genericscheduler, 1sfscheduler, mpiexec,
pbsproscheduler, torquescheduler

11-20

localscheduler

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

Access local scheduler on client machine

findResource

Parent None

Children simplejob and simpleparalleljob objects

A localscheduler object provides access to your client machine’s local
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution on the client machine.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

ClusterMatlabRoot
ClusterOsType

ClusterSize

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

Number of workers available to
scheduler

11-21

localscheduler

See Also

11-22

Configuration

DatalLocation

HasSharedFilesystem

Jobs

Type
UserData

jobmanager

Specify configuration to apply to
object or toolbox function

Specify directory where job data
is stored

Specify whether nodes share data
location

Jobs contained in job manager
service or in scheduler’s data
location

Type of scheduler object

Specify data to associate with
object

Isfscheduler

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

Access Platform LSF scheduler

findResource

Parent None

Children simplejob and simpleparalleljob objects

An lsfscheduler object provides access to your network’s Platform LSF
scheduler, which controls the job queue, and distributes job tasks to

workers or labs for execution.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

setupForParallelExecution

ClusterMatlabRoot
ClusterName

ClusterOsType

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Set options for submitting
parallel jobs to scheduler

Specify MATLAB root for cluster
Name of Platform LSF cluster

Specify operating system of nodes
on which scheduler will start
workers

11-23

Isfscheduler

See Also

11-24

ClusterSize

Configuration

DatalLocation

HasSharedFilesystem

Jobs

MasterName

ParallelSubmission-
WrapperScript

SubmitArguments

Type
UserData

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

Specify directory where job data
1s stored

Specify whether nodes share data
location

Jobs contained in job manager
service or in scheduler’s data
location

Name of Platform LSF master
node

Script that scheduler runs to
start labs

Specify additional arguments
to use when submitting job

to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type of scheduler object

Specify data to associate with
object

ccsscheduler, genericscheduler, jobmanager, mpiexec,
pbsproscheduler, torquescheduler

matlabpooljob

Purpose

Constructor

Container
Hierarchy

Description

Methods

Define MATLAB pool job behavior and properties when using job
manager

createMatlabPoolJob

Parent jobmanager object
Children task object

A matlabpooljob object contains all the information needed to define
what each lab does as part of the complete job execution. A MATLAB
pool job uses one worker in a MATLAB pool to run a parallel job on
the other labs of the pool. A matlabpooljob object is used only with a
job manager as scheduler.

cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler

11-25

matlabpooljob

wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to

object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

1D Object identifier

JobData Data made available to all

workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify M-file function to execute

when job is submitted to job
manager queue

11-26

matlabpooljob

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks

RunningFcn Specify M-file function to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Task First task contained in MATLAB
pool job object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job

See Also paralleljob, simplematlabpooljob, simpleparalleljob

11-27

mpiexec

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

11-28

Directly access mpiexec for job distribution

findResource

Parent None

Children simplejob and simpleparalleljob objects

An mpiexec object provides direct access to the mpiexec executable for
distribution of a job’s tasks to workers or labs for execution.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

ClusterMatlabRoot
ClusterOsType

ClusterSize

Configuration

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

mpiexec

DatalLocation

EnvironmentSetMethod

HasSharedFilesystem

Jobs

MpiexecFileName

SubmitArguments

Type
UserData

WorkerMachineOsType

Specify directory where job data
1s stored

Specify means of setting
environment variables for
mpiexec scheduler

Specify whether nodes share data
location

Jobs contained in job manager
service or in scheduler’s data
location

Specify pathname of executable
mpiexec command

Specify additional arguments
to use when submitting job

to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type of scheduler object

Specify data to associate with
object

Specify operating system of nodes
on which mpiexec scheduler will
start labs

See Also ccsscheduler, genericscheduler, jobmanager, 1sfscheduler,
pbsproscheduler, torquescheduler

11-29

paralleljob

Purpose

Constructor

Container
Hierarchy

Description

Methods

11-30

Define parallel job behavior and properties when using job manager

createParalleldob

Parent jobmanager object
Children task objects

A paralleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A paralleljob object is used only with a job
manager as scheduler.

cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler

paralleljob

Properties

wait

waitForState

Configuration

CreateTime

FileDependencies

FinishedFcn

FinishTime
ID
JobData

MaximumNumberOfWorkers

MinimumNumberOfWorkers

Name

Parent

PathDependencies

QueuedFcn

Wait for job to finish or change
state

Wait for object to change state

Specify configuration to apply to
object or toolbox function

When task or job was created

Directories and files that worker
can access

Specify callback to execute after
task or job runs

When task or job finished
Object identifier

Data made available to all
workers for job’s tasks

Specify maximum number of
workers to perform job tasks

Specify minimum number of
workers to perform job tasks

Name of job manager, job, or
worker object

Parent object of job or task

Specify directories to add to
MATLAB worker path

Specify M-file function to execute
when job is submitted to job
manager queue

11-31

paralleljob

See Also

11-32

RestartWorker

RunningFcn

StartTime
State

SubmitTime

Tag

Tasks

Timeout

UserData

UserName

Specify whether to restart
MATLAB workers before
evaluating job tasks

Specify M-file function to execute
when job or task starts running

When job or task started

Current state of task, job, job
manager, or worker

When job was submitted to queue

Specify label to associate with job
object

Tasks contained in job object

Specify time limit to complete
task or job

Specify data to associate with
object

User who created job

job, simplejob, simpleparalleljob

pbsproscheduler

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

Access PBS Pro scheduler

findResource

Parent None

Children simplejob and simpleparalleljob objects

A pbsproscheduler object provides access to your network’s PBS Pro
scheduler, which controls the job queue, and distributes job tasks to

workers or labs for execution.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

setupForParallelExecution

ClusterMatlabRoot
ClusterOsType

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Set options for submitting
parallel jobs to scheduler

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

11-33

pbsproscheduler

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

ParallelSubmission- Script that scheduler runs to

WrapperScript start labs

RcpCommand Command to copy files from client

ResourceTemplate Resource definition for PBS Pro
or TORQUE scheduler

RshCommand Remote execution command used
on worker nodes during parallel
job

ServerName Name of current PBS Pro or
TORQUE server machine

SubmitArguments Specify additional arguments
to use when submitting job
to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, jobmanager, 1sfscheduler,

mpiexec, torquescheduler

11-34

simplejob

Purpose

Constructor

Container
Hierarchy

Description

Methods

Define job behavior and properties when using local or third-party
scheduler

createdob

Parent ccsscheduler, genericscheduler, localscheduler,
1sfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask objects

A simplejob object contains all the tasks that define what each worker
does as part of the complete job execution. A simplejob object is used
only with a local or third-party scheduler.

cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler

11-35

simplejob

Properties

11-36

wait

waitForState

Configuration

CreateTime

FileDependencies

FinishTime
ID
JobData

Name

Parent

PathDependencies

StartTime
State

SubmitTime

Tag

Tasks

Wait for job to finish or change
state

Wait for object to change state

Specify configuration to apply to
object or toolbox function

When task or job was created

Directories and files that worker
can access

When task or job finished
Object identifier

Data made available to all
workers for job’s tasks

Name of job manager, job, or
worker object

Parent object of job or task

Specify directories to add to
MATLAB worker path

When job or task started

Current state of task, job, job
manager, or worker

When job was submitted to queue

Specify label to associate with job
object

Tasks contained in job object

simplejob

UserData Specify data to associate with
object
UserName User who created job
See Also job, paralleljob, simpleparalleljob

11-37

simplematlabpooljob

Purpose

Constructor

Container
Hierarchy

Description

Methods

11-38

Define MATLAB pool job behavior and properties when using local or

third-party scheduler

createMatlabPoolJdob

Parent ccsscheduler, genericscheduler, localscheduler,
1sfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask object

A simplematlabpooljob object contains all the information needed to
define what each lab does as part of the complete job execution. A
MATLAB pool job uses one worker in a MATLAB pool to run a parallel
job on the other labs of the pool. A simplematlabpooljob object is used
only with a local or third-party scheduler.

cancel
createTask

destroy

diary

findTask

getAllOQutputArguments

load

submit

Cancel job or task
Create new task in job

Remove job or task object from
parent and memory

Display or save Command
Window text of batch job

Task objects belonging to job
object

Output arguments from
evaluation of all tasks in job
object

Load workspace variables from
batch job

Queue job in scheduler

simplematlabpooljob

Properties

wait

waitForState

Configuration

CreateTime

FileDependencies

FinishTime
ID
JobData

MaximumNumberOfWorkers

MinimumNumberOfWorkers

Name

Parent

PathDependencies

StartTime
State

SubmitTime

Tag

Wait for job to finish or change
state

Wait for object to change state

Specify configuration to apply to
object or toolbox function

When task or job was created

Directories and files that worker
can access

When task or job finished
Object identifier

Data made available to all
workers for job’s tasks

Specify maximum number of
workers to perform job tasks

Specify minimum number of
workers to perform job tasks

Name of job manager, job, or
worker object

Parent object of job or task

Specify directories to add to
MATLAB worker path

When job or task started

Current state of task, job, job
manager, or worker

When job was submitted to queue

Specify label to associate with job
object

11-39

simplematlabpooljob

Task First task contained in MATLAB
pool job object
Tasks Tasks contained in job object
UserData Specify data to associate with
object
UserName User who created job
See Also matlabpooljob, paralleljob, simpleparalleljob

11-40

simpleparalleljob

Purpose

Constructor

Container
Hierarchy

Description

Methods

Define parallel job behavior and properties when using local or
third-party scheduler

createParalleldob

Parent ccsscheduler, genericscheduler, localscheduler,
1sfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask objects

A simpleparalleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A simpleparalleljob object is used only with

a local or third-party scheduler.

cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler

11-41

simpleparalleljob

Properties

11-42

wait

waitForState

Configuration

CreateTime

FileDependencies

FinishTime
ID
JobData

MaximumNumberOfWorkers

MinimumNumberOfWorkers

Name

Parent

PathDependencies

StartTime
State

SubmitTime

Tag

Wait for job to finish or change
state

Wait for object to change state

Specify configuration to apply to
object or toolbox function

When task or job was created

Directories and files that worker

can access
When task or job finished
Object identifier

Data made available to all
workers for job’s tasks

Specify maximum number of
workers to perform job tasks

Specify minimum number of
workers to perform job tasks

Name of job manager, job, or
worker object

Parent object of job or task

Specify directories to add to
MATLAB worker path

When job or task started

Current state of task, job, job
manager, or worker

When job was submitted to queue

Specify label to associate with job

object

simpleparalleljob

Tasks Tasks contained in job object
UserData Specify data to associate with
object
UserName User who created job
See Also job, paralleljob, simplejob

11-43

simpletask

Purpose Define task behavior and properties when using local or third-party
scheduler

Constructor createTask

c?“'amer Parent simplejob, simplematlabpoolijob, or
Hierarchy simpleparalleljob object

Children None

Description A simpletask object defines what each lab or worker does as part of the
complete job execution. A simpletask object is used only with a local
or third-party scheduler.

Methods cancel Cancel job or task
destroy Remove job or task object from
parent and memory
waitForState Wait for object to change state
Properties CaptureCommandWindowOutput Specify whether to return
Command Window output
CommandWindowOutput Text produced by execution of
task object’s function
Configuration Specify configuration to apply to
object or toolbox function
CreateTime When task or job was created
Error Task error information
ErrorIdentifier Task error identifier
ErrorMessage Message from task error

11-44

simpletask

See Also

FinishTime

Function

ID
InputArguments

Name

NumberOfQutputArguments

OutputArguments

Parent
StartTime
State

UserData

task

When task or job finished

Function called when evaluating
task

Object identifier
Input arguments to task object

Name of job manager, job, or
worker object

Number of arguments returned
by task function

Data returned from execution of
task

Parent object of job or task
When job or task started

Current state of task, job, job
manager, or worker

Specify data to associate with
object

11-45

task

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

11-46

Define task behavior and properties when using job manager

createTask

Parent

Children None

job, matlabpooljob, or paralleljob object

A task object defines what each lab or worker does as part of the
complete job execution. A task object is used only with a job manager

as scheduler.

cancel

destroy

waitForState

AttemptedNumberOfRetries

CaptureCommandWindowOutput

CommandWindowOutput

Configuration

CreateTime
Error

ErrorIdentifier

Cancel job or task

Remove job or task object from
parent and memory

Wait for object to change state

Number of times failed task was
rerun

Specify whether to return
Command Window output

Text produced by execution of
task object’s function

Specify configuration to apply to
object or toolbox function

When task or job was created
Task error information

Task error identifier

task

ErrorMessage

FailedAttemptInformation

FinishedFcn

FinishTime

Function

ID
InputArguments

MaximumNumberOfRetries

NumberOfOutputArguments

OQutputArguments

Parent

RunningFcn

StartTime
State

Timeout

UserData

Worker

Message from task error

Information returned from failed
task

Specify callback to execute after
task or job runs

When task or job finished

Function called when evaluating
task

Object identifier
Input arguments to task object

Specify maximum number of
times to rerun failed task

Number of arguments returned
by task function

Data returned from execution of
task

Parent object of job or task

Specify M-file function to execute
when job or task starts running

When job or task started

Current state of task, job, job
manager, or worker

Specify time limit to complete
task or job

Specify data to associate with
object

Worker session that performed
task

11-47

task

See Also simpletask

11-48

torquescheduler

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

Access TORQUE scheduler

findResource

Parent None

Children simplejob and simpleparalleljob objects

A torquescheduler object provides access to your network’s TORQUE
scheduler, which controls the job queue, and distributes job tasks to

workers or labs for execution.

createdob

createMatlabPoolJob
createParallelJdob
findJob

getDebuglLog

setupForParallelExecution

ClusterMatlabRoot
ClusterOsType

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object

Find job objects stored in
scheduler

Read output messages from job
run by supported third-party or
local scheduler

Set options for submitting
parallel jobs to scheduler

Specify MATLAB root for cluster

Specify operating system of nodes
on which scheduler will start
workers

11-49

torquescheduler

See Also

ClusterSize

Configuration

DatalLocation

HasSharedFilesystem

Jobs

ParallelSubmission-
WrapperScript

RcpCommand

ResourceTemplate

RshCommand

ServerName

SubmitArguments

Type
UserData

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

Specify directory where job data
1s stored

Specify whether nodes share data
location

Jobs contained in job manager
service or in scheduler’s data
location

Script that scheduler runs to
start labs

Command to copy files from client

Resource definition for PBS Pro
or TORQUE scheduler

Remote execution command used
on worker nodes during parallel
job

Name of current PBS Pro or
TORQUE server machine

Specify additional arguments
to use when submitting job

to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type of scheduler object

Specify data to associate with
object

ccsscheduler, genericscheduler, jobmanager, 1sfscheduler,
mpiexec, pbsproscheduler

worker

Purpose

Constructor

Container
Hierarchy

Description

Methods

Properties

Access information about MATLAB worker session

getCurrentWorker

Parent

Children

jobmanager object

A worker object represents the MATLAB worker session that evaluates
tasks in a job scheduled by a job manager. Only worker sessions started
with the startworker script can be represented by a worker object.

None

Computer

CurrentdJdob

CurrentTask

HostAddress

HostName

JobManager

Name

PreviousdJdob

Information about computer on
which worker is running

Job whose task this worker
session is currently evaluating

Task that worker is currently
running

IP address of host running job
manager or worker session

Name of host running job
manager or worker session

Job manager that this worker is
registered with

Name of job manager, job, or
worker object

Job whose task this worker
previously ran

11-51

worker

PreviousTask

State

See Also jobmanager, simpletask, task

11-52

Task that this worker previously
ran

Current state of task, job, job
manager, or worker

Function Reference

Parallel Code Execution (p. 12-2)

Codistributed Arrays (p. 12-3)

Job and Task Programming (p. 12-6)

Interlab Communication Within a
Parallel Job (p. 12-9)

Constructs for automatically
running code in parallel

Data partitioned across multiple
MATLAB sessions

Parallel computation through
individual tasks

Communications between labs
during job execution

12 Function Reference

12-2

Parallel Code Execution
Parallel Code on a MATLAB Pool
(p. 12-2)

Configuration, Input, and Output
(p. 12-2)

Interactive Functions (p. 12-3)

Parallel computations on a pool of
MATLAB sessions

Data access and setup control

Parallel code development and
debugging

Parallel Code on a MATLAB Pool

batch
Composite
distributed

matlabpool

parfor

spmd

Run MATLAB script as batch job
Create Composite object

Create distributed array from data
in client workspace

Open or close pool of MATLAB
sessions for parallel computation

Execute code loop in parallel

Execute code in parallel on MATLAB
pool

Configuration, Input, and Output

defaultParallelConfig

diary

exist

load

Default parallel computing
configuration

Display or save Command Window
text of batch job

Check whether Composite is defined
on labs

Load workspace variables from
batch job

Codistributed Arrays

pctRunOnAll

subsasgn

subsref

Interactive Functions

help
mpiprofile

pmode

Codistributed Arrays

Toolbox Functions

codistributed

codistributed.build

codistributed.cell
codistributed.colon

codistributor

codistributorid

Run command on client and all
workers in matlabpool

Subscripted assignment for
Composite

Subscripted reference for Composite

Help for toolbox functions in
Command Window

Profile parallel communication and
execution times

Interactive Parallel Command
Window

Create codistributed array from
replicated local data

Create codistributed array from
distributed data

Create codistributed cell array
Distributed colon operation

Create codistributor object for
codistributed arrays

Create 1-D codistributor object for
codistributed arrays

12-3

12 Function Reference

12-4

codistributorid.defaultPartition Default partition for codistributed

codistributor2dbc

array

Create 2-D block-cyclic codistributor
object for codistributed arrays

codistributor2dbc.defaultlLabGrid Default computational grid for 2-D

distributed.cell

for

gather

getCodistributor

getLocalPart
globallndices
isa
isComplete

isreplicated

redistribute

block-cyclic distributed arrays
Create distributed cell array
for-loop over distributed range

Transfer distributed array data to
local workspace

Codistributor object for existing
codistributed array

Local portion of codistributed array

Global indices for local part of
codistributed array

True if object is of specified class

True if codistributor object is
complete

True for replicated array

Redistribute codistributed array
with another distribution scheme

Overloaded MATLAB Functions

codistributed.
codistributed.
codistributed.

codistributed.

codistributed.

cell
eye
false
Inf

NaN

Create codistributed cell array
Create codistributed identity matrix
Create codistributed false array

Create codistributed array of Inf
values

Create codistributed array of
Not-a-Number values

Codistributed Arrays

codistributed.ones

codistributed.rand

codistributed.randn

codistributed.spalloc

codistributed.speye

codistributed.sprand

codistributed.sprandn

codistributed.true
codistributed.zeros
distributed.cell
distributed.eye
distributed.false
distributed.Inf

distributed.NaN

distributed.ones

distributed.rand

distributed.randn

distributed.spalloc

Create codistributed array of ones

Create codistributed array
of uniformly distributed
pseudo-random numbers

Create codistributed array of
normally distributed random values

Allocate space for sparse
codistributed matrix

Create codistributed sparse identity
matrix

Create codistributed sparse
array of uniformly distributed
pseudo-random values

Create codistributed sparse
array of uniformly distributed
pseudo-random values

Create codistributed true array
Create codistributed array of zeros
Create distributed cell array
Create distributed identity matrix
Create distributed false array

Create distributed array of Inf
values

Create distributed array of
Not-a-Number values

Create distributed array of ones

Create distributed array of uniformly
distributed pseudo-random numbers

Create distributed array of normally
distributed random values

Allocate space for sparse distributed
matrix

12-5

12 Function Reference

distributed.speye

distributed.sprand

distributed.sprandn

distributed.true
distributed.zeros

sparse

Job and Task Programming

12-6

Job Creation (p. 12-6)
Job Management (p. 12-7)
Task Execution Information (p. 12-8)

Object Control (p. 12-8)

Job Creation

createdob

createMatlabPoolJob
createParalleldob
createTask

dfeval

Create distributed sparse identity
matrix

Create distributed sparse
array of uniformly distributed
pseudo-random values

Create distributed sparse array of
normally distributed pseudo-random
values

Create distributed true array
Create distributed array of zeros

Create sparse distributed or
codistributed matrix

Job and task definition
Job and task execution

Information on the processes
evaluating a task

Parallel Computing Toolbox objects

Create job object in scheduler and
client

Create MATLAB pool job
Create parallel job object
Create new task in job

Evaluate function using cluster

Job and Task Programming

dfevalasync Evaluate function asynchronously
using cluster

findResource Find available parallel computing
resources

jobStartup M-file for user-defined options to run
when job starts

mpiLibConf Location of MPI implementation

mpiSettings Configure options for MPI
communication

pctconfig Configure settings for Parallel

Computing Toolbox client session

setupForParallelExecution Set options for submitting parallel
jobs to scheduler

taskFinish M-file for user-defined options to run
when task finishes

taskStartup M-file for user-defined options to run
when task starts

Job Management

cancel Cancel job or task

demote Demote job in job manager queue

destroy Remove job or task object from
parent and memory

findJob Find job objects stored in scheduler

findTask Task objects belonging to job object

getAllOutputArguments Output arguments from evaluation
of all tasks in job object

getDebuglLog Read output messages from job run
by supported third-party or local
scheduler

12-7

12 Function Reference

12-8

getJobSchedulerData

pause
promote

resume

setJobSchedulerData

submit
wait

waitForState

Task Execution Information

getCurrentdob

getCurrentdobmanager

getCurrentTask

getCurrentWorker

getFileDependencyDir

Object Control

clear

get

inspect

Get specific user data for job on
generic scheduler

Pause job manager queue
Promote job in job manager queue

Resume processing queue in job
manager

Set specific user data for job on
generic scheduler

Queue job in scheduler
Wait for job to finish or change state
Wait for object to change state

Job object whose task is currently
being evaluated

Job manager object that scheduled
current task

Task object currently being
evaluated in this worker session

Worker object currently running this
session

Directory where FileDependencies
are written on worker machine

Remove objects from MATLAB
workspace

Object properties
Open Property Inspector

Interlab Communication Within a Parallel Job

length Length of object array

methods List functions of object class

set Configure or display object properties
size Size of object array

Interlab Communication Within a Parallel Job

gcat Global concatenation

gop Global operation across all labs

gplus Global addition

labBarrier Block execution until all labs reach
this call

labBroadcast Send data to all labs or receive data
sent to all labs

labindex Index of this lab

labProbe Test to see if messages are ready to
be received from other lab

labReceive Receive data from another lab

labSend Send data to another lab

labSendReceive Simultaneously send data to and
receive data from another lab

numlabs Total number of labs operating in
parallel on current job

pload Load file into parallel session

psave Save data from parallel job session

12-9

12 Function Reference

12-10

Functions — Alphabetical
List

batch

13-2

Purpose

Syntax

Arguments

Description

Run MATLAB script as batch job

batch('aScript')

.
1}

j = batch(..., 'p1', vi, 'p2', v2, ...)
j The MATLAB pool job object.
'aScript' The script of M-code to be evaluated by the MATLAB
pool job.
p1, p2 Object properties or other arguments to control job
behavior.
vi, v2 Initial values for corresponding object properties or
arguments.

j = batch('aScript') runs the script aScript.m on a worker
according to the scheduler defined in the default parallel configuration.
The function returns j, a handle to the job object that runs the script.
The script file aScript.mis added to the FileDependencies and copied
to the worker.

j = batch(..., 'p?7', vi1, 'p2', v2, ...) allows additional
parameter-value pairs that modify the behavior of the job. The accepted
parameters are:

® 'Workspace' — A 1-by-1 struct to define the workspace on the
worker just before the script is called. The field names of the struct
define the names of the variables, and the field values are assigned
to the workspace variables. By default this parameter has a field for
every variable in the current workspace where batch is executed.

e 'Configuration' — A single string that is the name of a parallel
configuration to use to find the correct cluster. By default it is the
string returned from defaultParallelConfig. If you want the
configuration’s settings applied to the job properties, you must
explicitly specify the configuration, even if using the default. To apply
properties from the default parallel configuration, specify it with:

batch

Remarks

Examples

batch(..., 'Configuration', defaultParallelConfig)

'PathDependencies' — A string or cell array of strings that defines
paths to be added to the workers’ MATLAB path before the script
is executed.

'FileDependencies' — A string or cell array of strings. Each string
in the list identifies either a file or a directory, which is transferred
to the worker.

'CurrentDirectory' — A string to indicate in what directory the
script executes. There is no guarantee that this directory exists on
the worker. The default value for this property is the cwd of MATLAB
when the batch command is executed, unless any FileDependencies
are defined.

'CaptureDiary' — A boolean flag to indicate that the toolbox should
collect the diary from the function call. See the diary function for
information about the collected data. The default is true.

'"Matlabpool' — A positive scalar integer that defines the number of
labs to make into a MATLAB pool for the job to run on in addition
to the worker running the batch script. The script uses the pool for
execution of statements such as parfor and spmd. A value of N for
the property Matlabpool is effectively the same as adding a call to
matlabpool N into the script. Because the MATLAB pool requires
N workers in addition to the worker running the batch script, there
must be at least N+1 workers available on the cluster. The default

value is 0, which causes the script to run on only the single worker
without a MATLAB pool.

As a matter of good programming practice, when you no longer need it,
you should destroy the job created by the batch function so that it does
not continue to consume cluster storage resources.

Run a batch script on a worker without using a MATLAB pool:

j = batch('script1', 'matlabpool', 0);

13-3

batch

13-4

See Also

Run a batch MATLAB pool job on a remote cluster, using eight workers
for the MATLAB pool in addition to the worker running the batch
script. This job requires a total of nine workers:

j = batch('script1', 'matlabpool', 8);

Run a batch MATLAB pool job on a local worker, which employs two
other local workers:

j = batch('script1', 'configuration', 'local’',
‘matlabpool’, 2);

Clean up a batch job’s data after you are finished with it:

destroy(j)

diary, load, wait

cancel

Purpose

Syntax

Arguments

Description

Examples

Cancel job or task

cancel(t)
cancel(j)
t Pending or running task to cancel.
j Pending, running, or queued job to cancel.

cancel(t) stops the task object, t, that is currently in the pending or
running state. The task’s State property is set to finished, and no
output arguments are returned. An error message stating that the task
was canceled is placed in the task object’s ErrorMessage property, and
the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running.
The job’s State property is set to finished, and a cancel is executed
on all tasks in the job that are not in the finished state. A job object
that has been canceled cannot be started again.

If the job is running in a job manager, any worker sessions that are
evaluating tasks belonging to the job object will be restarted.

Cancel a task. Note afterward the task’s State, ErrorMessage, and
OutputArguments properties.

job1 = createdob(jm);
t = createTask(job1, @rand, 1, {3,3});
cancel(t)
get(t)
ID: 1
Function: @rand
NumberOfOutputArguments: 1
InputArguments: {[3] [3]}
OutputArguments: {1x0 cell}
CaptureCommandWindowOutput: 0
CommandWindowOutput: ''

13-5

cancel

13-6

See Also

State:
ErrorMessage:
ErrorIdentifier:
Timeout:
CreateTime:
StartTime:
FinishTime:
Worker:
Parent:
UserData:
RunningFcn:
FinishedFcn:

destroy, submit

'finished'

'Task cancelled by user'
'distcomp:task:Cancelled'’

Inf

'"Fri Oct 22 11:38:39 EDT 2004'
'Fri Oct 22 11:38:46 EDT 2004’
'"Fri Oct 22 11:38:46 EDT 2004’
[1]

[1x1 distcomp.job]

[1]

[1]

[1]

clear

Purpose

Syntax
Arguments

Description

Remarks

Examples

See Also

Remove objects from MATLAB workspace

clear obj

obj An object or an array of objects.

clear obj removes obj from the MATLAB workspace.

If obj references an object in the job manager, it is cleared from the
workspace, but it remains in the job manager. You can restore obj to
the workspace with the findResource, findJob, or findTask function;
or with the Jobs or Tasks property.

This example creates two job objects on the job manager jm. The
variables for these job objects in the MATLAB workspace are job1 and
job2. job1 is copied to a new variable, job1copy; then job1 and job2
are cleared from the MATLAB workspace. The job objects are then
restored to the workspace from the job object’s Jobs property as j1
and j2, and the first job in the job manager is shown to be identical to
job1copy, while the second job is not.

job1 = createdob(jm);
job2 = createdob(jm);
jobicopy = jobi;
clear job1 job2;
j1 = jm.dJobs(1);
j2 = jm.dobs(2);
isequal (jobicopy, j1)
ans =

1
isequal (jobicopy, j2)
ans =

0

createdob, createTask, finddob, findResource, findTask

13-7

codistributed

Purpose Create codistributed array from replicated local data
Syntax C = codistributed(X)
C = codistributed(X, codist)
C = codistributed(X, codist, lab)
C = codistributed(C1, codist)
Description C = codistributed(X) distributes a replicated X using the default

codistributor. X must be a replicated array, that is, it must have the
same value on all labs. size(C) is the same as size(X).

C = codistributed(X, codist) distributes a replicated X using the
codistributor codist. X must be a replicated array, namely it must
have the same value on all labs. size(C) is the same as size(X). For
information on constructing codistributor objects, see the reference
pages for codistributorid and codistributor2dbc

C = codistributed(X, codist, lab) distributes a local array X that
resides on the lab identified by lab, using the codistributor codist.
Local array X must be defined on all labs, but only the value from lab is
used to construct C. size(C) is the same as size(X).

C = codistributed(C1, codist) where the input array C1 is already
a codistributed array, redistributes the array C1 according to the
distribution scheme defined by codistributor codist. This is the same
as calling C = redistribute(C1, codist).

Remarks gather essentially performs the inverse of codistributed.
Examples Create a 1000-by-1000 codistributed array C1 using the default
distribution scheme.
spmd
N = 1000;
X = magic(N); % Replicated on every lab

C1 = codistributed(X); % Partitioned among the labs
end

13-8

codistributed

See Also

Create a 1000-by-1000 codistributed array C2, distributed by rows (over
its first dimension).

spmd

N = 1000;

X = magic(N);

C2 = codistributed(X, codistributorid(1));
end

codistributorid, codistributor2dbc, gather, globalIndices
getLocalPart, redistribute, size, subsasgn, subsref

13-9

codistributed.build

Purpose

Syntax

Description

Examples

13-10

Create codistributed array from distributed data

D = codistributed.build(L, codist)

D

codistributed.build(L, codist, 'noCommunication')

D = codistributed.build(L, codist) forms a codistributed array
with getLocalPart (D) = L. The codistributed array D is created as
if you had combined all copies of the local array L. The distribution
scheme is specified by codist. Global error checking ensures that
the local parts conform with the specified distribution scheme. For
information on constructing codistributor objects, see the reference
pages for codistributorid and codistributor2dbc

D = codistributed.build(L, codist, 'noCommunication')
builds a codistributed array, without performing any interworker
communications for error checking.

codist must be complete, which you can check by calling
codist.isComplete(). The requirements on the size and structure of
the local part L depend on the class of codist. For the 1-D and 2-D
block-cyclic codistributors, L must have the same class and sparsity
on all labs. Furthermore, the local part L. must represent the region
described by the globalIndices method on codist.

Create a codistributed array of size 1001-by-1001 such that column
ii contains the value ii.

spmd
N

= 1001;

globalSize = [N, NJ;

o°

%

%

Distribute the matrix over the second dimension (columns),
and let the codistributor derive the partition from the
global size.

codistr = codistributorid(2,

%

%

codistributorid.unsetPartition, globalSize)

On 4 labs, codistr.Partition equals [251, 250, 250, 250].
Allocate storage for the local part.

codistributed.build

localSize = [N, codistr.Partition(labindex)];
L = zeros(localSize);

% Use globalIndices to map the indices of the columns
of the local part into the global column indices.
lobalInd = codistr.globalIndices(2);

On 4 labs, globalInd has the values:

1:251 on lab 1

252:501 on lab 2

502:751 on lab 3

752:1001 on lab 4

o @ o°

o® of o°

o°

o°

Initialize the columns of the local part to
the correct value.

for localCol = 1:1length(globallInd)

globalCol = globalInd(localCol);

L(:, localCol) = globalCol;

o°

end
D = codistributed.build(L, codistr)
end
See Also codistributorid, codistributor2dbc, gather, globalIndices,

getLocalPart, redistribute, size, subsasgn, subsref

13-11

codistributed.cell

Purpose

Syntax

Description

13-12

Create codistributed cell array

= codistributed.cell(n)

= codistributed.cell(m, n, p, ...)

= codistributed.cell([m, n, p, ...])
= cell(n, codist)

= cell(m, n, p, ..., codist)

= cell([m, n, p, ...], codist)

OOOOOOO

C = codistributed.cell(n) creates an n-by-n codistributed array of
underlying class cell, distributing along columns.

C = codistributed.cell(m, n, p, ...) or C =
codistributed.cell([m, n, p, ...]) creates an m-by-n-by-p-by-...
codistributed array of underlying class cell, using a default scheme of
distributing along the last nonsingleton dimension.

Optional arguments to codistributed.cell must be specified after the
required arguments, and in the following order:

® codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

e 'noCommunication' — Specifies that no communication is to
be performed when constructing the array, skipping some error
checking steps.

C = cell(n, codist) is the same as C = codistributed.cell(n,
codist). You can also use the 'noCommunication' object with this
syntax. To use the default distribution scheme, specify a codistributor
constructor without arguments. For example:

spmd
C = cell(8, codistributorid());
end

codistributed.cell

Examples

See Also

C = cell(my, n, p, ..., codist) andC = cell([m, n, p, ...],
codist) are the same as C = codistributed.cell(m, n, p, ...)
and C = codistributed.cell([m, n, p, ...]), respectively. You

can also use the optional 'noCommunication' argument with this
syntax.

With four labs,

spmd(4)
C = codistributed.cell(1000);
end

creates a 1000-by-1000 distributed cell array C, distributed by its second
dimension (columns). Each lab contains a 1000-by-250 local piece of C.

spmd (4)
codist = codistributorid(2, 1:numlabs);
C = cell(10, 10, codist);

end

creates a 10-by-10 codistributed cell array C, distributed by its columns.
Each lab contains a 10-by-labindex local piece of C.

cell MATLAB function reference page
distributed.cell

13-13

codistributed.colon

Purpose Distributed colon operation

Syntax codistributed.colon(a,d,b)
codistributed.colon(a,b)

Description codistributed.colon(a,d,b) partitions the vector a:d:b into numlabs
contiguous subvectors of equal, or nearly equal length, and creates a
codistributed array whose local portion on each lab is the labindex-th
subvector.

codistributed.colon(a,b) usesd = 1.

Optional arguments to codistributed.colon must be specified after
the required arguments, and in the following order:

® codist — A codistributor object specifying the distribution scheme
of the resulting vector. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

e 'noCommunication' — Specifies that no communication is to be
performed when constructing the vector, skipping some error
checking steps.

Examples Partition the vector 1:10 into four subvectors among four labs.

spmd(4); C = codistributed.colon(1,10), end
Lab 1:
This lab stores C(1:3).
LocalPart: [1 2 3]
Codistributor: [1x1 codistributorid]
Lab 2:
This lab stores C(4:6).
LocalPart: [4 5 6]
Codistributor: [1x1 codistributorid]
Lab 3:
This lab stores C(7:8).

13-14

codistributed.colon

LocalPart: [7 8]
Codistributor: [1x1 codistributorid]
Lab 4:
This lab stores C(9:10).
LocalPart: [9 10]
Codistributor: [1x1 codistributorid]

See Also colon MATLAB function reference page

codistributorid, codistributor2dbc, for

13-15

codistributed.eye

Purpose Create codistributed identity matrix

= codistirubed.eye(n)

= codistributed.eye(m, n)

= codistributed.eye([m, n])
= eye(n, codist)

= eye(m, n, codist)

= eye([m, n], codist)

Syntax

OOOOOOO

Description C = codistirubed.eye(n) creates an n-by-n codistributed identity
matrix of underlying class double.

C = codistributed.eye(m, n) or C = codistributed.eye([m, n])
creates an m-by-n codistributed matrix of underlying class double with
ones on the diagonal and zeros elsewhere.

Optional arguments to codistributed.eye must be specified after the
required arguments, and in the following order:

e classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular eye function: 'double' (the
default), 'single', 'int8"', 'uint8"', 'int16', 'uint16', 'int32"
'uint32', 'int64', and 'uint64’'.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = eye(n, codist) is the same as C = codistributed.eye(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

13-16

codistributed.eye

Examples

See Also

spmd
C = eye(8, codistributorid());
end

C = eye(m, n, codist) andC = eye([m, n], codist) are the same
as C = codistributed.eye(m, n) and C = codistributed.eye([m,
n]), respectively. You can also use the optional arguments with this
syntax.

With four labs,

spmd (4)
C = codistributed.eye(1000);
end

creates a 1000-by-1000 codistributed double array C, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of C.

spmd (4)
codist = codistributor('1d', 2, 1:numlabs);
C = eye(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

eye MATLAB function reference page

codistributed.ones, codistributed.speye, codistributed.zeros,
distributed.eye

13-17

codistributed.false

Purpose

Syntax

Description

13-18

Create codistributed false array

= codistributed.false(n)

= codistributed.false(m, n, ...)

= codistributed.false([m, n, ...])
false(n, codist)

= false(m, n, ..., codist)

= false([m, n, ...], codist)

M m m T T
1]

F = codistributed.false(n) creates an n-by-n codistributed array
of logical zeros.

F = codistributed.false(m, n, ...) or F =
codistributed.false([m, n, ...]) creates an m-by-n-by-...
codistributed array of logical zeros.

Optional arguments to codistributed.false must be specified after
the required arguments, and in the following order:

® codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

F = false(n, codist) is the same as F = codistributed.false(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
F = false(8, codistributorid());
end

codistributed.false

Examples

See Also

F = false(m, n, ..., codist) and F = false([m, n, ...],
codist) are the same as F = codistributed.false(m, n, ...) and
F = codistributed.false([m, n, ...]), respectively. You can also

use the optional arguments with this syntax.

With four labs,

spmd (4)
F = false(1000, codistributor());
end

creates a 1000-by-1000 codistributed false array F, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of F.

spmd
codist = codistributor('1d', 2, 1:numlabs);
F = false(10, 10, codist);

end

creates a 10-by-10 codistributed false array F, distributed by its
columns. Each lab contains a 10-by-labindex local piece of F.

false MATLAB function reference page

codistributed.true, distributed.false

13-19

codistributed.Inf

Purpose

Syntax

Description

13-20

Create codistributed array of Inf values

= codistributed.Inf(n)

= codistributed.Inf(m, n, ...)

= codistributed.Inf([m, n, ...])
= Inf(n, codist)

= Inf(m, n, ..., codist)

= Inf([m, n, ...], codist)

OOOOOOO

C = codistributed.Inf(n) creates an n-by-n codistributed matrix of
Inf values.

C = codistributed.Inf(m, n, ...) orC = codistributed.Inf([m,
n, ...]) creates an m-by-n-by-... codistributed array of Inf values.

Optional arguments to codistributed.Inf must be specified after the
required arguments, and in the following order:

e classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular Inf function: 'double' (the
default), or 'single’.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = Inf(n, codist) is the same as C = codistributed.Inf(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
C = Inf(8, codistributorid());

codistributed.Inf

Examples

See Also

end
C = Inf(m, n, ..., codist) andC = Inf([m, n, ...], codist)
are the same as C = codistributed.Inf(m, n, ...) andC =
codistributed.Inf([m, n, ...]), respectively. You can also use the

optional arguments with this syntax.

With four labs,

spmd (4)
C = Inf (1000, codistributor())
end

creates a 1000-by-1000 codistributed double matrix C, distributed by
its second dimension (columns). Each lab contains a 1000-by-250 local
piece of C.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
C = Inf(10, 10, 'single', codist);

end

creates a 10-by-10 codistributed single array C, distributed by its
columns. Each lab contains a 10-by-labindex local piece of C.

Inf MATLAB function reference page
codistributed.NaN, distributed.Inf

13-21

codistributed.NaN

Purpose

Syntax

Description

13-22

Create codistributed array of Not-a-Number values

= codistributed.NaN(n)

= codistributed.NaN(m, n, ...)

= codistributed.NaN([m, n, ...])
= NaN(n, codist)

= NaN(m, n, ..., codist)

= NaN([m, n, ...], codist)

OOOOOOO
|

C = codistributed.NaN(n) creates an n-by-n codistributed matrix of
NaN values.

C = codistributed.NaN(m, n, ...) orC = codistributed.NaN([m,
n, ...]) creates an m-by-n-by-... codistributed array of NaN values.

Optional arguments to codistributed.NaN must be specified after the
required arguments, and in the following order:

e classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular NaN function: 'double' (the
default), or 'single’.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = NaN(n, codist) is the same as C = codistributed.NaN(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
C = NaN(8, codistributorid());

codistributed.NaN

Examples

See Also

end
C = NaN(m, n, ..., codist) andC = NaN([m, n, ...], codist)
are the same as C = codistributed.NaN(m, n, ...) andC =
codistributed.NaN([m, n, ...]), respectively. You can also use the

optional arguments with this syntax.

With four labs,

spmd (4)
C = NaN(1000, codistributor())
end

creates a 1000-by-1000 codistributed double matrix C of NaN values,
distributed by its second dimension (columns). Each lab contains a
1000-by-250 local piece of C.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
C = NaN(10, 10, 'single', codist);

end

creates a 10-by-10 codistributed single array C, distributed by its
columns. Each lab contains a 10-by-labindex local piece of C.

NaN MATLAB function reference page
codistributed.Inf, distributed.NaN

13-23

codistributed.ones

Purpose Create codistributed array of ones
Syntax C = codistributed.ones(n)
C = codistributed.ones(m, n, ...)
C = codistributed.ones([m, n, ...])
C = ones(n, codist)
C = ones(m, n, codist)
C = ones([m, n], codist)
Description C = codistributed.ones(n) creates an n-by-n codistributed matrix of
ones of class double.
C = codistributed.ones(m, n, ...) or C =
codistributed.ones([m, n, ...]) creates an m-by-n-by-...

codistributed array of ones.

Optional arguments to codistributed.ones must be specified after the
required arguments, and in the following order:

® classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular ones function: 'double’ (the
default), 'single', 'int8"', 'uint8"', 'int16', 'uint16', 'int32'
'uint32', 'int64', and 'uint64’'.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = ones(n, codist) is the same as C = codistributed.ones(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

13-24

codistributed.ones

Examples

See Also

spmd
C = ones(8, codistributorid());
end

C = ones(m, n, codist) and C = ones([m, n], codist) are

the same as C = codistributed.ones(m, n, ...) and C =
codistributed.ones([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

With four labs,

spmd (4)
C = codistributed.ones (1000, codistributor());
end

creates a 1000-by-1000 codistributed double array of ones, C, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of C.

spmd (4)
codist = codistributor('1d', 2, 1:numlabs);
C = ones(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array of ones, C, distributed by
its columns. Each lab contains a 10-by-labindex local piece of C.

ones MATLAB function reference page

codistributed.eye, codistributed.zeros, distributed.ones

13-25

codistributed.rand

Purpose

Syntax

Description

13-26

Create codistributed array of uniformly distributed pseudo-random
numbers

= codistributed.rand(n)

= codistributed.rand(m, n, ...)

= codistributed.rand([m, n, ...])
= rand(n, codist)

= rand(m, n, codist)

= rand([m, n], codist)

T XV WV IV VO

R = codistributed.rand(n) creates an n-by-n codistributed array
of underlying class double.

R = codistributed.rand(m, n, ...) or R =
codistributed.rand([m, n, ...]) creates an m-by-n-by-...
codistributed array of underlying class double.

Optional arguments to codistributed. rand must be specified after the
required arguments, and in the following order:

® classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular rand function: 'double’ (the
default), 'single', 'int8"', 'uint8"', 'int16', 'uint16', 'int32"
'uint32', 'int64', and 'uint64’'.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

R = rand(n, codist) is the same as R = codistributed.rand(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

codistributed.rand

Remarks

Examples

See Also

spmd
R = codistributed.rand(8, codistributorid());
end

R = rand(m, n, codist) and R = rand([m, n], codist) are

the same as R = codistributed.rand(m, n, ...) andR =
codistributed.rand([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

When you use rand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

With four labs,

spmd (4)
R = codistributed.rand (1000, codistributor())
end

creates a 1000-by-1000 codistributed double array R, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of R.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs);

R = codistributed.rand(10, 10, 'uint16', codist);
end

creates a 10-by-10 codistributed uint16 array R, distributed by its
columns. Each lab contains a 10-by-labindex local piece of R.

rand MATLAB function reference page

codistributed.randn, codistributed. sprand,
codistributed.sprandn, distributed.rand

13-27

codistributed.randn

Purpose

Syntax

Description

13-28

Create codistributed array of normally distributed random values

RN = codistributed.randn(n)

RN = codistributed.randn(m, n, ...)
RN = codistributed.randn([m, n, ...])
RN = randn(n, codist)

RN = randn(m, n, codist)

RN = randn([m, n], codist)

RN = codistributed.randn(n) creates an n-by-n codistributed array
of normally distributed random values with underlying class double.

RN = codistributed.randn(m, n, ...) and RN =
codistributed.randn([m, n, ...]) create an m-by-n-by-...
codistributed array of normally distributed random values.

Optional arguments to codistributed.randn must be specified after
the required arguments, and in the following order:

® classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular rand function: 'double’ (the
default), 'single', 'int8"', 'uint8"', 'int16', 'uint16', 'int32'
'uint32', 'int64', and 'uint64’'.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

RN = randn(n, codist) is the same as RN =
codistributed.randn(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

codistributed.randn

Remarks

Examples

See Also

spmd
RN = codistributed.randn(8, codistributorid());
end

RN = randn(m, n, codist) and RN = randn([m, n], codist) are
the same as RN = codistributed.randn(m, n, ...) and RN =
codistributed.randn([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

When you use randn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

With four labs,

spmd (4)
RN = codistributed.randn(1000);
end

creates a 1000-by-1000 codistributed double array RN, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of RN.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
RN = randn(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array RN, distributed by its
columns. Each lab contains a 10-by-labindex local piece of RN.

randn MATLAB function reference page

codistributed.rand, codistributed.sprand,
codistributed.sprandn, distributed.randn

13-29

codistributed.spalloc

Purpose

Syntax

Description

Examples

13-30

Allocate space for sparse codistributed matrix

SD = codistributed.spalloc(M, N, nzmax)
SD = spalloc(M, N, nzmax, codist)
SD = codistributed.spalloc(M, N, nzmax) creates an M-by-N

all-zero sparse codistributed matrix with room to hold nzmax nonzeros.

Optional arguments to codistributed.spalloc must be specified after
the required arguments, and in the following order:

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. The allocated space for nonzero
elements is consistent with the distribution of the matrix among the
labs according to the Partition of the codistributor.

e 'noCommunication' — Specifies that no communication is to be
performed when constructing the array, skipping some error checking
steps. You can also use this argument with SD = spalloc(M, N,
nzmax, codistr).

SD = spalloc(M, N, nzmax, codist) is the same as SD =
codistributed.spalloc(M, N, nzmax, codist). You can also use
the optional arguments with this syntax.

Allocate space for a 1000-by-1000 sparse codistributed matrix with
room for up to 2000 nonzero elements. Use the default codistributor.
Define several elements of the matrix.

spmd % codistributed array created inside spmd statement
N = 1000;
SD = codistributed.spalloc(N, N, 2*N);
for ii=1:N-1
SD(ii,ii:ii+1) = [ii ii];
end
end

codistributed.spalloc

See Also spalloc MATLAB function reference page

sparse, distributed.spalloc

13-31

codistributed.speye

Purpose

Syntax

Description

13-32

Create codistributed sparse identity matrix

CS = codistributed.speye(n)

CS = codistributed.speye(m, n)
CS = codistributed.speye([m, n])
CS = speye(n, codist)

CS = speye(m, n, codist)

CS = speye([m, n], codist)

CS = codistributed.speye(n) creates an n-by-n sparse codistributed
array of underlying class double.

CS = codistributed.speye(m, n) or CS =
codistributed.speye([m, n]) creates an m-by-n sparse codistributed
array of underlying class double.

Optional arguments to codistributed.speye must be specified after
the required arguments, and in the following order:

® codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = speye(n, codist) is the same as CS =
codistributed.speye(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.speye(8, codistributorid());
end

codistributed.speye

Examples

See Also

CS = speye(m, n, codist) and CS = speye([m, n], codist)
are the same as CS = codistributed.speye(m, n) and CS =
codistributed.speye([m, n]), respectively. You can also use the
optional arguments with this syntax.

Note To create a sparse codistributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

CLS = logical(speye(m, n, codistributorid()))

With four labs,

spmd(4)
CS = speye (1000, codistributor())
end

creates a 1000-by-1000 sparse codistributed double array CS, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of CS.

spmd (4)
codist = codistributorid(2, 1:numlabs);
CS = speye(10, 10, codist);

end

creates a 10-by-10 sparse codistributed double array CS, distributed by
its columns. Each lab contains a 10-by-labindex local piece of CS.

speye MATLAB function reference page

distributed.speye, sparse

13-33

codistributed.sprand

Purpose
Syntax

Description

Remarks

13-34

Create codistributed sparse array of uniformly distributed
pseudo-random values

CS = codistributed.sprand(m, n, density)
CS = sprand(n, codist)
CS = codistributed.sprand(m, n, density) creates an m-by-n

sparse codistributed array with approximately density*m*n uniformly
distributed nonzero double entries.

Optional arguments to codistributed.sprand must be specified after
the required arguments, and in the following order:

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = sprand(n, codist) is the same as CS =

codistributed.sprand(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.sprand(8, 8, 0.2, codistributorid());
end

When you use sprand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

codistributed.sprand

Examples With four labs,

spmd (4)
CS = codistributed.sprand(1000, 1000, .001);
end

creates a 1000-by-1000 sparse codistributed double array CS with
approximately 1000 nonzeros. CS is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of CS.

spmd (4)
codist = codistributorid(2, 1:numlabs);
CS = sprand(10, 10, .1, codist);

end

creates a 10-by-10 codistributed double array CS with approximately
10 nonzeros. CS is distributed by its columns, and each lab contains a
10-by-labindex local piece of CS.

See Also sprand MATLAB function reference page

codistributed.rand, distributed.sprandn

13-35

codistributed.sprandn

Purpose
Syntax

Description

Remarks

13-36

Create codistributed sparse array of uniformly distributed
pseudo-random values

CS = codistributed.sprandn(m, n, density)
CS = sprandn(n, codist)
CS = codistributed.sprandn(m, n, density) creates an m-by-n

sparse codistributed array with approximately density*m*n normally
distributed nonzero double entries.

Optional arguments to codistributed.sprandn must be specified after
the required arguments, and in the following order:

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = sprandn(n, codist) is the same as CS =

codistributed.sprandn(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.sprandn(8, 8, 0.2, codistributorid());
end

When you use sprandn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

codistributed.sprandn

Examples With four labs,

spmd (4)
CS = codistributed.sprandn(1000, 1000, .001);
end

creates a 1000-by-1000 sparse codistributed double array CS with
approximately 1000 nonzeros. CS is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of CS.

spmd (4)
codist = codistributorid(2, 1:numlabs);
CS = sprandn(10, 10, .1, codist);

end

creates a 10-by-10 codistributed double array CS with approximately
10 nonzeros. CS is distributed by its columns, and each lab contains a
10-by-labindex local piece of CS.

See Also sprandn MATLAB function reference page

codistributed.rand, codistributed.randn, sparse,
codistributed.speye, codistributed.sprand, distributed.sprandn

13-37

codistributed.true

Purpose Create codistributed true array
Syntax T = codistributed.true(n)
T = codistributed.true(m, n, ...)
T = codistributed.true([m, n, ...])
T = true(n, codist)
T = true(m, n, ..., codist)
T = true([m, n, ...], codist)
Description T = codistributed.true(n) creates an n-by-n codistributed array
of logical ones.
T = codistributed.true(m, n, ...) or T =
codistributed.true([m, n, ...]) creates an m-by-n-by-...

codistributed array of logical ones.

Optional arguments to codistributed. true must be specified after the
required arguments, and in the following order:

® codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

T = true(n, codist) is the same as T = codistributed.true(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd

T = true(8, codistributorid());
end

13-38

codistributed.true

Examples

See Also

T = true(m, n, ..., codist) and T = true([m, n, ...],
codist) are the same as T = codistributed.true(m, n, ...) and
T = codistributed.true([m, n, ...]), respectively. You can also

use the optional arguments with this syntax.

With four labs,

spmd (4)
T = true(1000, codistributor());
end

creates a 1000-by-1000 codistributed true array T, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of T.

spmd (4)
codist = codistributor('1d', 2, 1:numlabs);
T = true(10, 10, codist);

end

creates a 10-by-10 codistributed true array T, distributed by its columns.
Each lab contains a 10-by-labindex local piece of T.

true MATLAB function reference page

codistributed.false, distributed.true

13-39

codistributed.zeros

Purpose

Syntax

Description

13-40

Create codistributed array of zeros

= codistributed.zeros(n)

= codistributed.zeros(m, n, ...)

= codistributed.zeros([m, n, ...])
= zeros(n, codist)

= zeros(m, n, codist)

= zeros([m, n], codist)

OOOOOOO

C = codistributed.zeros(n) creates an n-by-n codistributed matrix
of zeros of class double.

C = codistributed.zeros(m, n, ...) or C =
codistributed.zeros([m, n, ...]) creates an m-by-n-by-...
codistributed array of zeros.

Optional arguments to codistributed.zeros must be specified after
the required arguments, and in the following order:

® classname — Specifies the class of the codistributed array C. Valid
choices are the same as for the regular zeros function: 'double’ (the
default), 'single', 'int8"', 'uint8"', 'int16', 'uint16', 'int32"
'uint32', 'int64', and 'uint64’'.

¢ codist — A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributorid
and codistributor2dbc

® 'noCommunication' — Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = zeros(n, codist) is the same as C = codistributed.zeros(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

codistributed.zeros

Examples

See Also

spmd
C = zeros(8, codistributorid());
end

C = zeros(m, n, codist) and C = zeros([m, n], codist) are
the same as C = codistributed.zeros(m, n, ...) and C =
codistributed.zeros([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

With four labs,

spmd (4)
C = codistributed.zeros(1000, codistributor());
end

creates a 1000-by-1000 codistributed double array of zeros, C,
distributed by its second dimension (columns). Each lab contains a
1000-by-250 local piece of C.

spmd (4)
codist = codistributor('1d', 2, 1:numlabs)
C = zeros(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array of zeros, C, distributed by
its columns. Each lab contains a 10-by-labindex local piece of C.

zeros MATLAB function reference page

codistributed.eye, codistributed.ones, distributed.zeros

13-41

codistributor

Purpose

Syntax

Description

13-42

Create codistributor object for codistributed arrays

codist = codistributor()

codist = codistributor('1d"')

codist = codistributor('1d', dim)

codist = codistributor('1d', dim, part)
codist = codistributor('2d')

codist = codistributor('2d', lbgrid)

codist = codistributor('2d', lbgrid, blksize)

There are two schemes for distributing arrays. The scheme denoted by
the string '1d' distributes an array along a single specified subscript,
the distribution dimension, in a noncyclic, partitioned manner. The
scheme denoted by '2d', employed by the parallel matrix computation
software ScaLAPACK, applies only to two-dimensional arrays, and
varies both subscripts over a rectangular computational grid of labs in
a blocked, cyclic manner.

codist = codistributor(), with no arguments, returns a default
codistributor object with zero-valued or empty parameters, which
can then be used as an argument to other functions to indicate that
the function is to create a codistributed array if possible with default
distribution. For example,

Z = zeros(..., codistributor(
R

)

)
randn(..., codistributor())

codist = codistributor('1d') is the same as codist =
codistributor().

codist = codistributor('1d', dim) also forms a codistributor object
with codist.Dimension = dim and default partition.

codist = codistributor('1d', dim, part) also forms
a codistributor object with codist.Dimension = dim and
codist.Partition = part.

codistributor

codist = codistributor('2d') forms a '2d' codistributor object.
For more information about '2d' distribution, see “2-Dimensional
Distribution” on page 5-17.

codist = codistributor('2d', lbgrid) forms a '2d' codistributor
object with the lab grid defined by lbgrid and with default block size.

codist = codistributor('2d', lbgrid, blksize) forms a '2d'
codistributor object with the lab grid defined by 1bgrid and with a block
size defined by blksize.

codist = getCodistributor (D) returns the codistributor object of
codistributed array D.

Examples Create a 3-dimensional array with distribution along the second
dimension, and partition scheme [1 2 1 2 ...].
spmd

if mod(labindex, 2)
L = rand(2,1,4)

else
L = rand(2,2,4)
end
A = codistributed(L, codistributor())

end

On four labs, create a 20-by-5 codistributed array A, distributed by rows
(over its first dimension) with a uniform partition scheme.

spmd

L = magic(5) + labindex;

dim = 1; % dimension of distribution

A = codistributed(L, codistributor('1d', dim));
end

See Also codistributed, getLocalPart, redistribute

13-43

codistributorid

Purpose

Syntax

Description

13-44

Create 1-D codistributor object for codistributed arrays

codist = codistributorid()

codist codistributorid(dim)

codist = codistributorid(dim, part)

codist codistributorid(dim, part, gsize)

The 1-D codistributor distributes arrays along a single, specified
distribution dimension, in a noncyclic, partitioned manner.

codist = codistributorid() forms a 1-D codistributor object using
default dimension and partition. The default dimension is the last
nonsingleton dimension of the codistributed array. The default partition
distributes the array along the default dimension as evenly as possible.

codist = codistributorid(dim) forms a 1-D codistributor object for
distribution along the specified dimension: 1 distributes along rows, 2
along columns, etc.

codist = codistributorid(dim, part) forms a 1-D codistributor
object for distribution according to the partition vector part. For
example C1 = codistributorid(1, [1, 2, 3, 4]) describes the
distribution scheme for an array of ten rows to be codistributed by its
first dimension (rows), to four labs, with 1 row to the first, 2 rows to
the second, etc.

The resulting codistributor of any of the above syntax is incomplete
because its global size is not specified. A codistributor constructed

in this manner can be used as an argument to other functions as a
template codistributor when creating codistributed arrays.

codist = codistributorid(dim, part, gsize) forms a codistributor
object with distribution dimension dim, distribution partition part, and
global size of its codistributed arrays gsize. The resulting codistributor
object is complete and can be used to build a codistributed array from
its local parts with codistributed.build. To use a default dimension,
specify codistributorid.unsetDimension for that argument; the
distribution dimension is derived from gsize and is set to the last
non-singleton dimension. Similarly, to use a default partition, specify

codistributorid

codistributorid.unsetPartition for that argument; the partition
1s then derived from the default for that global size and distribution
dimension.

The local part on lab labidx of a codistributed array using such a
codistributor is of size gsize in all dimensions except dim, where the
size is part (labidx). The local part has the same class and attributes
as the overall codistributed array. Conceptually, the overall global
array could be reconstructed by concatenating the various local parts
along dimension dim.

Examples Use a codistributorld object to create an N-by-N matrix of ones,
distributed by rows.

N = 1000;

spmd
codistr = codistributorid(1); % 1 spec 1st dimension (rows).
C = codistributed.ones(N, codistr);

end

Use a fully specified codistributorld object to create a trivial N-by-N
codistributed matrix from its local parts. Then visualize which elements
are stored on lab 2.

N = 1000;
spmd
codistr = codistributorid(
codistributorid.unsetDimension,
codistributorid.unsetPartition,
[N, NI);
myLocalSize = [N, N]; % start with full size on each lab
% then set myLocalSize to default part of whole array:
myLocalSize(codistr.Dimension) = codistr.Partition(labindex);
myLocalPart = labindex*ones(myLocalSize); % arbitrary values
D = codistributed.build(myLocalPart, codistr);
end

spy(D == 2);

13-45

codistributorid

See Also codistributed, codistributorid, codistributor2dbc, redistribute

13-46

codistributor1d.defaultPartition

Purpose
Syntax

Description

Examples

See Also

Default partition for codistributed array

P = codistributorid.defaultPartition(n)

P codistributorid.defaultPartition(n) is a vector with sum(P)
= n and length(P) = numlabs. The first rem(n,numlabs) elements
of P are equal to ceil(n/numlabs) and the remaining elements are
equal to floor(n/numlabs). This function is the basis for the default
distribution of codistributed arrays.

If numlabs = 4, the following code returns the vector [3 3 2 2] on
all labs:

spmd
P = codistributorid.defaultPartition(10)
end

codistributed, codistributed.colon, codistributorid

13-47

codistributor2dbc

Purpose

Syntax

Description

13-48

Create 2-D block-cyclic codistributor object for codistributed arrays

codist = codistributor2dbc()

codist = codistributor2dbc(lbgrid)

codist = codistributor2dbc(lbgrid, blksize)

codist = codistributor2dbc(lbgrid, blksize, orient)

codist = codistributor2dbc(lbgrid, blksize, orient, gsize)

The 2-D block-cyclic codistributor can be used only for two-dimensional
arrays. It distributes arrays along two subscripts over a rectangular
computational grid of labs in a block-cyclic manner. For a complete
description of 2-D block-cyclic distribution, default parameters, and
the relationship between block size and lab grid, see “2-Dimensional
Distribution” on page 5-17. The 2-D block-cyclic codistributor is used by
the ScaLAPACK parallel matrix computation software library.

codist = codistributor2dbc() forms a 2-D block-cyclic codistributor
object using default lab grid and block size.

codist = codistributor2dbc(lbgrid) forms a 2-D block-cyclic
codistributor object using the specified lab grid and default block size.
lbgrid must be a two-element vector defining the rows and columns
of the lab grid, and the rows times columns must equal the number of
labs for the codistributed array.

codist = codistributor2dbc(lbgrid, blksize) forms a 2-D
block-cyclic codistributor object using the specified lab grid and block
size.

codist = codistributor2dbc(lbgrid, blksize, orient) allows an
orientation argument. The default orientation is row orientation, and
it is the only orientation currently supported. Therefore, orient must
always be'row'.

The resulting codistributor of any of the above syntax is incomplete
because its global size is not specified. A codistributor constructed
this way can be used as an argument to other functions as a template
codistributor when creating codistributed arrays.

codistributor2dbc

codist = codistributor2dbc(lbgrid, blksize, orient,
gsize) forms a codistributor object that distributes arrays
with the global size gsize. The resulting codistributor object
is complete and can therefore be used to build a codistributed
array from its local parts with codistributed.build. To use
the default values for lab grid, block size, and orientation,
specify them using codistributor2dbc.defaultLabGrid,
codistributor2dbc.defaultBlockSize, and
codistributor2dbc.defaultOrientation, respectively.

Examples Use a codistributor2dbc object to create an N-by-N matrix of ones.

N = 1000;
spmd

codistr = codistributor2dbc();

D = codistributed.ones(N, codistr);
end

Use a fully specified codistributor2dbc object to create a trivial N-by-N
codistributed matrix from its local parts. Then visualize which elements
are stored on lab 2.

N = 1000;
spmd
codistr = codistributor2dbc(...
codistributor2dbc.defaultLabGrid,
codistributor2dbc.defaultBlockSize,
‘row', [N, NJ);
[length(codistr.globalIndices(1)),
length(codistr.globalIndices(2))];
myLocalPart = labindex*ones(myLocalSize);
D = codistributed.build(myLocalPart, codistr);

myLocalSize

end
spy(D == 2);
See Also codistributed, getLocalPart, redistribute

13-49

codistributor2dbc.defaultLabGrid

Purpose
Syntax

Description

Examples

See Also

13-50

Default computational grid for 2-D block-cyclic distributed arrays

grid = codistributor2dbc.defaultLabGrid()

grid

codistributor2dbc.defaultLabGrid() returns a vector, grid
[nrow ncol], defining a computational grid of nrow-by-ncol labs in

the open MATLAB pool, such that numlabs = nrow x ncol.

The grid defined by codistributor2dbc.defaultlLabGrid is as close to
a square as possible. The following rules define nrow and ncol:

If numlabs is a perfect square, nrow = ncol = sqrt(numlabs).

If numlabs is an odd power of 2, then nrow = nrol/2 =
sqrt(numlabs/2).

nrow <= ncol.
If numlabs is a prime, nrow = 1, ncol = nmlabs

nrow is the greatest integer less than or equal to sqrt (numlabs) for
which ncol = numlabs/nrow is also an integer.

View the computational grid layout of the default distribution scheme
for the open MATLAB pool.

spmd
grid = codistributor2dbc.defaultlLabGrid
end

codistributed, codistributor2dbc, numlabs

Composite

Purpose

Syntax

Description

Examples

See Also

Create Composite object

C = Composite()
C = Composite(nlabs)
C = Composite() creates a Composite object on the client using labs

from the MATLAB pool. The actual number of labs referenced by this
Composite object depends on the size of the MATLAB pool and any
existing Composite objects. Generally, you should construct Composite
objects outside any spmd statement.

C = Composite(nlabs) creates a Composite object on the parallel
resource set that matches the specified constraint. nlabs must be a
vector of length 1 or 2, containing integers or Inf. If nlabs is of length
1, it specifies the exact number of labs to use. If nlabs is of size 2, it
specifies the minimum and maximum number of labs to use. The actual
number of labs used is the maximum number of labs compatible with the
size of the MATLAB pool, and with other existing Composite objects. An
error is thrown if the constraints on the number of labs cannot be met.

A Composite object has one entry for each lab; initially each entry
contains no data. Use either indexing or an spmd block to define values
for the entries.

Create a Composite object with no defined entries, then assign its
values:

c = Composite(); % One element per lab in the pool
for ii = 1:1ength(c)

% Set the entry for each lab to zero

c{ii} = 0; % Value stored on each lab
end

matlabpool, spmd

13-51

createlob

Purpose

Syntax

Arguments

Description

13-52

Create job object in scheduler and client

obj = createdob()

obj = createdob(scheduler)

obj = createdob(..., 'p7', vi1, 'p2', v2, ...)

obj = createdob(..., 'configuration', 'ConfigurationName',

.)

obj The job object.
scheduler The scheduler object created by findResource.
p1, p2 Object properties configured at object creation.
vi, v2 Initial values for corresponding object properties.

obj = createdob() creates a job using the scheduler identified by the
default parallel configuration and sets the property values of the job as
specified in the default configuration.

obj = createdob(scheduler) creates a job object at the data location
for the identified scheduler, or in the job manager. When you specify a
scheduler without using the configuration option, no configuration
1s used, so no configuration properties are applied to the job object.

obj = createdob(..., 'p7', vi, 'p2', v2, ...) creates a job
object with the specified property values. For a listing of the valid
properties of the created object, see the job object reference page (if
using a job manager) or simplejob object reference page (if using a
third-party scheduler). If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported

by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are job object property names and the field values specify the
property values.

createlob

Examples

See Also

If you are using a third-party scheduler instead of a job manager,
the job’s data is stored in the location specified by the scheduler’s
DatalLocation property.

obj = createdob(..., 'configuration', 'ConfigurationName',

.) creates a job object using the scheduler identified by the
configuration and sets the property values of the job as specified in that
configuration. For details about defining and applying configurations,
see “Programming with User Configurations” on page 6-16.

Construct a job object using the default configuration.
obj = createdob();

Add tasks to the job.
for i = 1:10

createTask(obj, @rand, 1, {10});
end

Run the job.

submit (obj);

Wait for the job to finish running, and retrieve the job results.

waitForState(obj);
out = getAllOutputArguments(obj);

Display the random matrix returned from the third task.
disp(out{3});
Destroy the job.

destroy(obj);

createParalleldob, createTask, findJob, findResource, submit

13-53

createMatlabPoolJob

Purpose

Syntax

Arguments

Description

Examples

13-54

Create MATLAB pool job

job = createMatlabPoolJdob()

job = createMatlabPoolJdob('p1', vi, 'p2', v2, ...)
job = createMatlabPoolJob(..., 'configuration',
"ConfigurationName',...)
job The job object.
p1, p2 Object properties configured at object creation.
vi, v2 Initial values for corresponding object properties.

job = createMatlabPoolJob() creates a MATLAB pool job using the
scheduler identified by the default parallel configuration.

job = createMatlabPoolJob('p1', vi, 'p2', v2, ...) createsa
MATLAB pool job with the specified property values. For a listing of
the valid properties of the created object, see the matlabpooljob object
reference page (if using a job manager) or simplematlabpooljob object
reference page (if using a third-party scheduler). If an invalid property
name or property value is specified, the object is not created. These
values will override any values in the default configuration.

job = createMatlabPoolJob(..., 'configuration',
'ConfigurationName',...) creates a MATLAB pool job using the
scheduler identified by the configuration and sets the property values of
the job as specified in that configuration. For details about defining and
applying configurations, see “Programming with User Configurations”
on page 6-16.

Construct a MATLAB pool job object.
j = createMatlabPoolJob('Name', 'testMatlabPooljob');

Add the task to the job.

createTask(j, @labindex, 1, {});

createMatiabPoollJob

See Also

Set the number of workers required for parallel execution.

j .MinimumNumberOfWorkers = 5;
j .MaximumNumberOfWorkers 10;

Run the job.

submit(j)

Wait until the job is finished.

waitForState(j, 'finished');

Retrieve the job results.

out = getAllOutputArguments(j);

Display the output.

celldisp(out);

Destroy the job.

destroy(j);

createParalleldob, createTask, defaultParallelConfig, submit

13-55

createParallelJob

Purpose

Syntax

Arguments

Description

13-56

Create parallel job object

pjob = createParalleldob()
pjob = createParalleldob(scheduler)

pjob = createParalleldob(..., 'p7', vi, 'p2', v2, ...)
pjob = createParalleldob(..., 'configuration',
‘ConfigurationName',...)
pjob The parallel job object.
scheduler The scheduler object created by findResource.
p1, p2 Object properties configured at object creation.
vi, v2 Initial values for corresponding object properties.

pjob = createParalleldob() creates a parallel job using the
scheduler identified by the default parallel configuration and sets the
property values of the job as specified in the default configuration.

pjob = createParallelJob(scheduler) creates a parallel job object
at the data location for the identified scheduler, or in the job manager.
When you specify a scheduler without using the configuration
option, no configuration is used, so no configuration properties are
applied to the job object.

pjob = createParalleldob(..., 'p7', vi, 'p2', v2, ...)
creates a parallel job object with the specified property values. For a
listing of the valid properties of the created object, see the paralleljob
object reference page (if using a job manager) or simpleparalleljob
object reference page (if using a third-party scheduler). If an invalid
property name or property value is specified, the object will not be
created.

Property value pairs can be in any format supported by the set function,
l.e., param-value string pairs, structures, and param-value cell array
pairs. Future modifications to the job object result in a remote call to
the job manager or modification to data at the scheduler’s data location.

createParallelJob

Examples

pjob = createParalleldob(..., 'configuration',
'ConfigurationName',...) creates a parallel job object

using the scheduler identified by the configuration and sets the property
values of the job as specified in that configuration. For details about
defining and applying configurations, see “Programming with User
Configurations” on page 6-16.

Construct a parallel job object using the default configuration.

pjob = createParallelJob();

Add the task to the job.

createTask(pjob, 'rand', 1, {3});

Set the number of workers required for parallel execution.

set(pjob, 'MinimumNumberOfWorkers',3);
set(pjob, 'MaximumNumberOfWorkers',3);

Run the job.
submit(pjob);
Wait for the job to finish running, and retrieve the job results.

waitForState(pjob);
out = getAllOutputArguments(pjob);

Display the random matrices.

celldisp(out);
out{1} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
out{2} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185

13-57

createParallelJob

0.6068 0.7621 0.8214
out{3} =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

Destroy the job.

destroy(pjob);

See Also createdob, createTask, findJob, findResource, submit

13-58

createTask

Purpose Create new task in job

= createTask
= createTask
= createTask
= createTask

Syntax j
j H H

ey

~+ + +
—_ e~ —~ —~

Arguments t

{inputargs}

{C1,...,Cm}
p1, p2

vil, v2

Description t =

!F5N5
F, N

..., 'configuration',

{inputargs})
, {C1,...,Cm})

'‘p1',v1,'p2',v2,...)

"ConfigurationName',...)

Task object or vector of task objects.
The job that the task object is created in.

A handle to the function that is called when
the task is evaluated, or an array of function
handles.

The number of output arguments to be
returned from execution of the task function.
This is a double or array of doubles.

A row cell array specifying the input
arguments to be passed to the function F.
Each element in the cell array will be passed
as a separate input argument. If this is a
cell array of cell arrays, a task is created for
each cell array.

Cell array of cell arrays defining input
arguments to each of m tasks.

Task object properties configured at object
creation.

Initial values for corresponding task object
properties.

createTask(j, F, N, {inputargs}) creates a new task object

in job j, and returns a reference, t, to the added task object. This
task evaluates the function specified by a function handle or function

13-59

createTask

13-60

name F, with the given input arguments {inputargs}, returning N
output arguments.

t = createTask(j, F, N, {C1,...,Cm}) uses a cell array of m cell
arrays to create m task objects in job j, and returns a vector, t, of
references to the new task objects. Each task evaluates the function
specified by a function handle or function name F. The cell array C1
provides the input arguments to the first task, C2 to the second task,
and so on, so that there is one task per cell array. Each task returns
N output arguments. If F is a cell array, each element of F specifies

a function for each task in the vector; it must have m elements. If N
1s an array of doubles, each element specifies the number of output
arguments for each task in the vector. Multidimensional matrices of
inputs F, Nand {C1,...,Cm} are supported; if a cell array is used for F,
or a double array for N, its dimensions must match those of the input
arguments cell array of cell arrays. The output t will be a vector with
the same number of elements as {C1,...,Cm}. Note that because a
parallel job has only one task, this form of vectorized task creation is
not appropriate for parallel jobs.

t = createTask(..., 'p7',vl,'p2',v2,...) adds a task object with
the specified property values. For a listing of the valid properties of
the created object, see the task object reference page (if using a job
manager) or simpletask object reference page (if using a third-party
scheduler). If an invalid property name or property value is specified,
the object will not be created.

Note that the property value pairs can be in any format supported

by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are task object property names and the field values specify the
property values.

t = createTask(..., 'configuration', 'ConfigurationName',...)
creates a task job object with the property values specified in the
configuration ConfigurationName. For details about defining and
applying configurations, see “Programming with User Configurations”
on page 6-16.

createTask

Examples

See Also

Create a job object.
jm = findResource('scheduler', 'type', 'jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost"');
j = createdob(jm);

Add a task object which generates a 10-by-10 random matrix.

obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Wait for the job to finish running, and get the output from the task
evaluation.

waitForState(j);
taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

Create a job with three tasks, each of which generates a 10-by-10
random matrix.

jm = findResource('scheduler', 'type', 'jobmanager’,

"name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost');
= createdob(jm);
createTask(j, @rand, 1, {{10,10} {10,110} {10,10}});

~ .
In 1

createdob, createParalleldob, findTask

13-61

defaultParallelConfig

Purpose

Syntax

Arguments

Description

13-62

Default parallel computing configuration

[config, allconfigs] = defaultParallelConfig
[oldconfig, allconfigs] = defaultParallelConfig(newconfig)

config String indicating name of current default
configuration

allconfigs Cell array of strings indicating names of all
available configurations

oldconfig String indicating name of previous default
configuration

newconfig String specifying name of new default
configuration

The defaultParallelConfig function allows you to programmatically
get or set the default parallel configuration and obtain a list of all valid
configurations.

[config, allconfigs] = defaultParallelConfig returns the name
of the default parallel computing configuration, as well as a cell array
containing the names of all available configurations.

[oldconfig, allconfigs] = defaultParallelConfig(newconfig)
sets the default parallel computing configuration to newconfig and
returns the previous default configuration and a cell array containing
the names of all available configurations. The previous configuration is
provided so that you can reset the default configuration to its original
setting at the end of your session.

The settings specified for defaultParallelConfig are saved as a part
of your MATLAB preferences.

The cell array allconfigs always contains a configuration called
"local' for the local scheduler. The default configuration returned by
defaultParallelConfig is guaranteed to be found in allconfigs.

defaultParallelConfig
|

If the default configuration has been deleted, or if it has never been set,
defaultParallelConfig returns 'local' as the default configuration.

Examples Read the name of the default parallel configuration that is currently in
effect, and get a listing of all available configurations.

[ConfigNow ConfiglList] = defaultParallelConfig

Select the configuration named 'MyConfig' to be the default parallel
configuration.

defaultParallelConfig('MyConfig')

See Also findResource, matlabpool, pmode

13-63

demote

Purpose Demote job in job manager queue

Syntax demote(jm, job)

Arguments jm The job manager object that contains the job.
job Job object demoted in the job queue.

Description demote(jm, job) demotes the job object job that is queued in the job

manager jm.

If job is not the last job in the queue, demote exchanges the position
of job and the job that follows it in the queue.

Remarks After a call to demote or promote, there is no change in the order of
job objects contained in the Jobs property of the job manager object.
To see the scheduled order of execution for jobs in the queue, use the
findJob function in the form [pending queued running finished]
= finddJob(jm).

Examples Create and submit multiple jobs to the job manager identified by the
default parallel configuration:

jm = findResource();

j1 createdob('name', 'dob A');
j2 createdob('name', 'dob B');
j3 createdob('name','dob C');
submit(j1);submit(j2);submit(j3);

Demote one of the jobs by one position in the queue:
demote(jm, j2)
Examine the new queue sequence:

[pjobs, gjobs, rjobs, fjobs] = finddob(jm);
get(qjobs, 'Name')

13-64

demote

'dob A'
'dob C'
‘dob B'

See Also createdob, findJdob, promote, submit

13-65

destroy

Purpose

Syntax
Arguments

Description

Remarks

Examples

See Also

13-66

Remove job or task object from parent and memory

destroy(obj)

obj Job or task object deleted from memory.

destroy(obj) removes the job object reference or task object reference
obj from the local session, and removes the object from the job manager
memory. When obj is destroyed, it becomes an invalid object. You can
remove an invalid object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying
one reference to that object invalidates all the remaining references to
it. You should remove these remaining references from the workspace
with the clear command.

The task objects contained in a job will also be destroyed when a job
object is destroyed. This means that any references to those task objects
will also be invalid.

Because its data is lost when you destroy an object, destroy should be
used after output data has been retrieved from a job object.

Destroy a job and its tasks.

jm = findResource('scheduler', 'type', 'jobmanager’,
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

createdob, createTask

dfeval

Purpose Evaluate function using cluster
Syntax [yl,...,ym] = dfeval(F, x1,...,xn)
y = dfeval(..., 'P1',V1,'P2',V2,...)
[yl,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',
"ConfigurationName',...)
Arguments F Function name, function handle, or cell array

of function names or handles.

X1, ..., Xn Cell arrays of input arguments to the functions.

yl, ..., ym Cell arrays of output arguments; each element
of a cell array corresponds to each task of the
job.

'P1', V1, 'P2', Property name/property value pairs for the

V2, ... created job object; can be name/value pairs or
structures.

Description [yl,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of

an feval in a cluster of machines using Parallel Computing Toolbox
software. dfeval evaluates the function F, with arguments provided
in the cell arrays x1,...,xn. F can be a function handle, a function
name, or a cell array of function handles/function names where the
length of the cell array is equal to the number of tasks to be executed.
x1,...,xn are the inputs to the function F, specified as cell arrays in
which the number of elements in the cell array equals the number of
tasks to be executed. The first task evaluates function F using the first
element of each cell array as input arguments; the second task uses the
second element of each cell array, and so on. The sizes of x1,...,xn
must all be the same.

The results are returned to y1,...,ym, which are column-based cell
arrays, each of whose elements corresponds to each task that was
created. The number of cell arrays (m) is equal to the number of output
arguments returned from each task. For example, if the job has 10

13-67

dfeval

13-68

tasks that each generate three output arguments, the results of dfeval
are three cell arrays of 10 elements each. When evaluation is complete,
dfeval destroys the job.

y = dfeval(..., 'P71',V1,'P2',V2,...) accepts additional
arguments for configuring different properties associated with the job.
Valid properties and property values are

® Job object property value pairs, specified as name/value pairs or
structures. (Properties of other object types, such as scheduler, task,
or worker objects are not permitted. Use a configuration to set
scheduler and task properties.)

* 'JobManager', 'JobManagerName'. This specifies the job manager
on which to run the job. If you do not use this property to specify a
job manager, the default is to run the job on the first job manager
returned by findResource.

® 'LookupURL', 'host:port'. This makes a unicast call to the job
manager lookup service at the specified host and port. The job
managers available for this job are those accessible from this lookup
service. For more detail, see the description of this option on the
findResource reference page.

® 'StopOnError',true|{false}. You may also set the value to logical
1 (true) or 0 (false). If true (1), any error that occurs during
execution in the cluster will cause the job to stop executing. The
default value 1s 0 (false), which means that any errors that occur
will produce a warning but will not stop function execution.

[yl,...,ym] = dfeval(F, x1,...,xn, ... ‘'configuration',
'ConfigurationName',...) evaluates the function F in a

cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. For details about
defining and applying configurations, see “Programming with User
Configurations” on page 6-16. Note that configurations enable you to
use dfeval with any type of scheduler.

dfeval

Examples

Note that dfeval runs synchronously (sync); that is, it does not return
the MATLAB prompt until the job is completed. For further discussion
of the usage of dfeval, see “Evaluating Functions Synchronously” on
page 7-2.

Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random
matrix.

y = dfeval(@rand, {1 2 3})
y:
[0.9501]

[2x2 double]
[3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand, {2 1},{3 4});

y{1}
ans =
0.8132 0.1389 0.1987
0.0099 0.2028 0.6038
y{2}
ans =

0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array
and the second task creates a 3-by-4 array of zeros.

y = dfeval({@rand @zeros},{1 3},{2 4});

y{1}
ans =
0.0579 0.3529
y{2}
ans =
0 0 0 0
0 0 0 0
0 0 0 0

13-69

dfeval

See Also

13-70

Create five random 2-by-4 matrices using MyJobManager to execute
tasks, where the tasks time out after 10 seconds, and the function will
stop if an error occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4},
‘JobManager', 'MyJobManager', 'Timeout',10, 'StopOnError', true);

Evaluate the user function myFun using the cluster as defined in the
configuration myConfig.

y = dfeval(@myFun, {taskiargs, task2args, task3args},

‘configuration', 'myConfig',
'FileDependencies', {'myFun.m'});

dfevalasync, feval, findResource

dfevalasync

Purpose Evaluate function asynchronously using cluster
Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P7',V1,'P2',V2,
.)
Job = dfevalasync(F, numArgOut, x1,...,xn,
'configuration', 'ConfigurationName',...)
Arguments Job Job object created to evaluation the
function.
F Function name, function handle, or cell

array of function names or handles.

numArgout Number of output arguments from each
task’s execution of function F.

X1, ..., Xn Cell arrays of input arguments to the
functions.

"P1', V1, 'P2', Property name/property value pairs for the

vV2,... created job object; can be name/value pairs

or structures.

Description Job = dfevalasync(F, numArgOut, x1,...,xn,
'P1',V1,'P2',V2,...) is equivalent to dfeval, except that
it runs asynchronously (async), returning to the prompt immediately
with a single output argument containing the job object that it has
created and sent to the cluster. You have immediate access to the
job object before the job is completed. You can use waitForState to
determine when the job is completed, and getAl110utputArguments to
retrieve your results.

Job = dfevalasync(F, numArgQOut, x1,...,xn,

‘configuration', 'ConfigurationName',...) evaluates the function
F in a cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find

and initialize a scheduler, create a job, and create tasks. For details
about defining and applying configurations, see “Programming with

13-71

dfevalasync

User Configurations” on page 6-16. Configurations enable you to use
dfevalasync with any type of scheduler.

For further discussion on the usage of dfevalasync, see “Evaluating
Functions Asynchronously” on page 7-8.

Examples Execute a sum function distributed in three tasks.

job = dfevalasync(@sum,1,{[1,2],[3,4]1,[5,6]},
‘jobmanager', 'MyJobManager');

When the job is finished, you can obtain the results associated with
the job.

waitForState(job);
data = getAllOutputArguments(job)
data =

[3]

[7]

[11]

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval, feval, getAllOutputArguments, waitForState

13-72

diary

Purpose
Syntax

Arguments

Description

See Also

Display or save Command Window text of batch job

diary(job)
diary(job, 'filename')

job Job from which to view Command Window output
text.
‘filename' File to append with Command Window output text

from batch job

diary(job) displays the Command Window output from the batch job
in the MATLAB Command Window. The Command Window output will
be captured only if the batch command included the 'CaptureDiary'
argument with a value of true.

diary(job, 'filename') causes the Command Window output from
the batch job to be appended to the specified file.

diary MATLAB function reference page
batch, load

13-73

distributed

Purpose
Syntax

Description

Examples

13-74

Create distributed array from data in client workspace

D

distributed(X)

D = distributed(X) creates a distributed array from X. X is an array
stored on the MATLAB client, and D is a distributed array stored in
parts on the workers of the open MATLAB pool.

Constructing a distributed array from local data this way is appropriate
only if the MATLAB client can store the entirety of X in its memory. To
construct large distributed arrays, use one of the static constructor
methods such as distributed.ones, distributed.zeros, etc.

Create a small array and distribute it:

Nsmall = 50;
D1 = distributed(magic(Nsmall));

Create a large distributed array using a static build method:

Nlarge = 1000;
D2 = distributed.rand(Nlarge);

distributed.cell

Purpose

Syntax

Description

Examples

See Also

Create distributed cell array

D = distributed.cell(n)
D = distributed.cell(m, n, p, ...)
D = distributed.cell([m, n, p, ...])

D = distributed.cell(n) creates an n-by-n distributed array of
underlying class cell.

D = distributed.cell(m, n, p, ...) orD =
distributed.cell([m, n, p, ...]) create an m-by-n-by-p-by-...
distributed array of underlying class cell.

Create a distributed 1000-by-1000 cell array:

D = distributed.cell(1000)

cell MATLAB function reference page

codistributed.cell

13-75

distributed.eye

Purpose

Syntax

Description

Examples

See Also

13-76

Create distributed identity matrix

D = distributed.eye(n)

D = distributed.eye(m, n)

D = distributed.eye([m, n])

D = distributed.eye(..., classname)

D = distributed.eye(n) creates an n-by-n distributed identity matrix

of underlying class double.

D = distributed.eye(m, n) or D = distributed.eye([m, n])
creates an m-by-n distributed matrix of underlying class double with 1’s
on the diagonal and 0’s elsewhere.

D = distributed.eye(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular eye
function: 'double’ (the default), 'single', 'int8"', 'uint8"', 'int16"',
‘uint16', 'int32"', 'uint32', 'int64', and 'uint64’'.

Create a 1000-by-1000 distributed identity matrix of class double:
D = distributed.eye(1000)

eye MATLAB function reference page

codistributed.eye, distributed.ones, distributed. speye,
distributed.zeros

distributed.false

Purpose

Syntax

Description

Examples

See Also

Create distributed false array

F = distributed.false(n)
= distributed.false(m, n, ...)
distributed.false([m, n, ...1])

m m
I

F = distributed.false(n) creates an n-by-n distributed array of
logical zeros.

F = distributed.false(m, n, ...) orF = distributed.false([m,
n, ...]) creates an m-by-n-by-... distributed array of logical zeros.

Create a 1000-by-1000 distributed false array.

F = distributed.false(1000);

false MATLAB function reference page

codistributed.false, distributed.true

13-77

distributed.Inf

Purpose

Syntax

Description

Examples

See Also

13-78

Create distributed array of Inf values

distributed.Inf
distributed.Inf
distributed.Inf
distributed.Inf

n)
m, n, ...)
[m, n, ...])

..., classname)

O O OO
o

(
(
(
(

D = distributed.Inf(n) creates an n-by-n codistributed matrix of
Inf values.

D = distributed.Inf(m, n, ...) orD = distributed.Inf([m, n,
.1) creates an m-by-n-by-... codistributed array of Inf values.

D = distributed.Inf(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular Inf
function: 'double’ (the default), or 'single’.

Create a 1000-by-1000 distributed matrix of Inf values:
D = distributed.Inf(1000)

Inf MATLAB function reference page
codistributed.Inf, distributed.NaN

distributed.NaN

Purpose

Syntax

Description

Examples

See Also

Create distributed array of Not-a-Number values

distributed.NaN
distributed.NaN
distributed.NaN
distributed.NaN

n)
m, n, ...)
[m, n, ...])

..., classname)

O O OO
o

(
(
(
(

D = distributed.NaN(n) creates an n-by-n codistributed matrix of
NaN values.

D = distributed.NaN(m, n, ...) orD = distributed.NaN([m, n,
.1) creates an m-by-n-by-... distributed array of NaN values.

D = distributed.NaN(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular NaN
function: 'double’ (the default), or 'single’.

Create a 1000-by-1000 distributed matrix of NaN values of class double:

D = distributed.NaN(1000)

Inf MATLAB function reference page
codistributed.NaN, distributed.Inf

13-79

distributed.ones

Purpose Create distributed array of ones
Syntax D = distributed.ones(n)
D = distributed.ones(m, n, ...)
D = distributed.ones([m, n, ...])
D = distributed.ones(..., classname)

Description D = distributed.ones(n) creates an n-by-n codistributed matrix of
ones of class double.
D = distributed.ones(m, n, ...) orD = distributed.ones([m,
n, ...]) creates an m-by-n-by-... distributed array of ones.
D = distributed.ones(..., classname) specifies the class of the

distributed array D. Valid choices are the same as for the regular ones
function: 'double’ (the default), 'single', 'int8"', 'uint8"', 'int16"',
‘uint16', 'int32"', 'uint32', 'int64', and 'uint64’'.
Examples Create a 1000-by-1000 distributed matrix of ones of class double:
D = distributed.ones(1000);

See Also ones MATLAB function reference page

codistributed.ones, distributed.eye, distributed.zeros

13-80

distributed.rand

Purpose

Syntax

Description

Remarks

Examples

See Also

Create distributed array of uniformly distributed pseudo-random
numbers

R = distributed.rand(n)

R = distributed.rand(m, n, ...)

R = distributed.rand([m, n, ...])
R

distributed.rand(..., classname)

R = distributed.rand(n) creates an n-by-n codistributed array of
underlying class double.

R = distributed.rand(m, n, ...) orR = distributed.rand([m,
n, ...]) creates an m-by-n-by-... distributed array of underlying class
double.

R = distributed.rand(..., classname) specifies the class of the
distributed array R. Valid choices are the same as for the regular rand
function: 'double’ (the default), 'single', 'int8"', 'uint8"', 'int16"',
'uint16', 'int32"', 'uint32', 'int64', and 'uint64'.

When you use rand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Create a 1000-by-1000 distributed matrix of random values of class
double:

R = distributed.rand(1000);

rand MATLAB function reference page

codistributed.rand, distributed.randn, distributed.sprand,
distributed.sprandn

13-81

distributed.randn

Purpose

Syntax

Description

Remarks

Examples

See Also

13-82

Create distributed array of normally distributed random values

RN = distributed.randn(n)

RN = distributed.randn(m, n, ...)

RN = distributed.randn([m, n, ...])

RN = distributed.randn(..., classname)

RN = distributed.randn(n) creates an n-by-n distributed array of

normally distributed random values with underlying class double.

RN = distributed.randn(m, n, ...) and RN =
distributed.randn([m, n, ...]) create an m-by-n-by-...
distributed array of normally distributed random values.

RN = distributed.randn(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular randn
function: 'double’ (the default), 'single', 'int8"', 'uint8"', 'int16"',
'uint16', 'int32"', 'uint32', 'int64', and 'uint64'.

When you use randn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Create a 1000-by-1000 distributed matrix of normally distributed
random values of class double:

RN = distributed.randn(1000);

randn MATLAB function reference page

codistributed.randn, distributed.rand, distributed.speye,
distributed.sprand, distributed.sprandn

distributed.spalloc

Purpose
Syntax

Description

Examples

See Also

Allocate space for sparse distributed matrix

SD = distributed.spalloc(M, N, nzmax)

SD = distributed.spalloc(M, N, nzmax) creates an M-by-N all-zero
sparse distributed matrix with room to hold nzmax nonzeros.

Allocate space for a 1000-by-1000 sparse distributed matrix with room
for up to 2000 nonzero elements, then define several elements:

N = 1000;
SD = distributed.spalloc(N, N, 2*N);
for ii=1:N-1
SD(ii,ii:ii+1) = [ii ii];
end

spalloc MATLAB function reference page

codistributed.spalloc, sparse

13-83

distributed.speye

Purpose

Syntax

Description

Examples

See Also

13-84

Create distributed sparse identity matrix

DS = distributed.speye(n)

DS = distributed.speye(m, n)
DS = distributed.speye([m, n])
DS = distributed.speye(n) creates an n-by-n sparse distributed

array of underlying class double.

DS = distributed.speye(m, n) or DS = distributed.speye([m,
n]) creates an m-by-n sparse distributed array of underlying class
double.

Create a distributed 1000-by-1000 sparse identity matrix:

N = 1000;
DS = distributed.speye(N);

speye MATLAB function reference page

codistributed.speye, distributed.eye

distributed.sprand

Purpose

Syntax

Description

Remarks

Examples

See Also

Create distributed sparse array of uniformly distributed pseudo-random
values

DS distributed.sprand(m, n, density)

DS distributed.sprand(m, n, density) creates an m-by-n
sparse distributed array with approximately density*m*n uniformly
distributed nonzero double entries.

When you use sprand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Create a 1000-by-1000 sparse distributed double array DS with
approximately 1000 nonzeros.

DS = distributed.sprand(1000, 1000, .001);

sprand MATLAB function reference page

codistributed.sprand, distributed.rand, distributed.randn
sparse, distributed.speye, distributed.sprandn

13-85

distributed.sprandn

Purpose

Syntax

Description

Remarks

Examples

See Also

13-86

Create distributed sparse array of normally distributed pseudo-random
values

DS distributed.sprandn(m, n, density)

DS distributed.sprandn(m, n, density) creates an m-by-n
sparse distributed array with approximately density*m*n normally
distributed nonzero double entries.

When you use sprandn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Create a 1000-by-1000 sparse distributed double array DS with
approximately 1000 nonzeros.

DS = distributed.sprandn(1000, 1000, .001);

sprandn MATLAB function reference page

codistributed.sprandn, distributed.rand, distributed.randn
sparse, distributed.speye, distributed.sprand

distributed.true

Purpose

Syntax

Description

Examples

See Also

Create distributed true array

T = distributed.true(n)
T = distributed.true(m, n, ...)
T = distributed.true([m, n, ...])

T = distributed.true(n) creates an n-by-n distributed array of
logical ones.

T = distributed.true(m, n, ...) or T = distributed.true([m,
n, ...]) creates an m-by-n-by-... distributed array of logical ones.

Create a 1000-by-1000 distributed true array.

T = distributed.true(1000);

true MATLAB function reference page

codistributed.true, distributed.false

13-87

distributed.zeros

Purpose

Syntax

Description

Examples

See Also

13-88

Create distributed array of zeros

D = distributed.zeros(n)

D = distributed.zeros(m, n, ...)

D = distributed.zeros([m, n, ...])

D = distributed.zeros(..., classname)

D = distributed.zeros(n) creates an n-by-n codistributed matrix of

zeros of class double.

D = distributed.zeros(m, n, ...) orD = distributed.zeros([m,
n, ...]) creates an m-by-n-by-... distributed array of zeros.
D = distributed.zeros(..., classname) specifies the class of the

distributed array D. Valid choices are the same as for the regular zeros

function: 'double’ (the default), 'single', 'int8"', 'uint8"', 'int16"',

'uint16', 'int32"', 'uint32', 'int64', and 'uint64'.

Create a 1000-by-1000 distributed matrix of zeros using default class:
D = distributed.zeros(1000);

zeros MATLAB function reference page

codistributed.zeros, distributed.eye, distributed.ones

exist

Purpose

Syntax

Description

Examples

See Also

Check whether Composite is defined on labs

h = exist(C, labidx)
h = exist(C)
h = exist(C, labidx) returns true if the entry in Composite C has a

defined value on the lab with labindex labidx, false otherwise. In the
general case where labidx is an array, the output h is an array of the

same size as labidx, and h(i) indicates whether the Composite entry

labidx (i) has a defined value.

h = exist(C) is equivalent to h = exist(C, 1:length(C)).

If exist (C, labidx) returns true, C(labidx) does not throw an error,
provided that the values of C on those labs are serializable. The function
throws an error if the lab indices are invalid.

Define a variable on a random number of labs. Check on which labs the
Composite entries are defined, and get all those values:

spmd
if rand() > 0.5
¢ = labindex;
end
end
ind = exist(c);
cvals = c(ind);

Composite

13-89

findJob

Purpose

Syntax

Arguments

Description

13-90

Find job objects stored in scheduler

out = findJob(sched)
[pending queued running finished] = findJob(sched)
out = finddJob(sched, 'p7',v1,'p2',v2,...)

sched Scheduler object in which to find the job.

pending Array of jobs whose State is pending in
scheduler sched.

queued Array of jobs whose State is queued in
scheduler sched.

running Array of jobs whose State is running in
scheduler sched.

finished Array of jobs whose State is finished in
scheduler sched.

out Array of jobs found in scheduler sched.

p1, p2 Job object properties to match.

vil, v2 Values for corresponding object properties.

out = findJob(sched) returns an array, out, of all job objects stored
in the scheduler sched. Jobs in the array are ordered by the ID property
of the jobs, indicating the sequence in which they were created.

[pending queued running finished] = findJob(sched) returns
arrays of all job objects stored in the scheduler sched, by state. Within
pending, running, and finished, the jobs are returned in sequence of
creation. Jobs in the array queued are in the order in which they are
queued, with the job at queued (1) being the next to execute.

out = finddJob(sched, 'p7',v1,'p2',v2,...) returns an array, out,
of job objects whose property names and property values match those
passed as parameter-value pairs, p7, vi, p2, v2.

findJob

See Also

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
field names are job object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyJob, then findJob will not find
that object while searching for a Name property value of myjob.

createdob, findResource, findTask, submit

13-91

findResource

Purpose Find available parallel computing resources
Syntax out = findResource()
out = findResource('scheduler', ... 'configuration',

‘ConfigurationName')
out = findResource('scheduler', 'type', 'SchedType')

out

findResource ('worker')

out = findResource('scheduler', 'type', 'jobmanager',
"LookupURL', 'host:port')
out = findResource('worker', 'LookupURL', 'host:port')

out = findResource(.

Arguments out

‘configuration’
"ConfigurationName'

‘scheduler’

'SchedType'

‘worker'
"LookupURL'
"host:port'

p1, p2

v1, v2

13-92

,'p1t, v, 'p2', v2,...)

Object or array of objects returned.

Literal string to indicate usage of a
configuration.

Name of configuration to use.

Literal string specifying that you are finding
a scheduler, which can be a job manager or a
third-party scheduler.

Specifies the type of scheduler: ' jobmanager',
"local’, 'hpcserver', 'LSF', 'pbspro’,
"torque', 'mpiexec', or any string that
starts with 'generic'.

Literal string specifying that you are finding
a worker.

Literal string to indicate usage of a remote
lookup service.

Host name and (optionally) port of remote
lookup service to use.

Object properties to match.

Values for corresponding object properties.

findResource

Description

out = findResource() returns a scheduler object , out, representing
the scheduler identified by the default parallel configuration, with
the scheduler object properties set to the values defined in that
configuration.

out = findResource('scheduler', ... 'configuration',
'ConfigurationName') returns a scheduler object , out,
representing the scheduler identified by the parallel configuration
ConfigurationName, with the scheduler object properties set to the
values defined in that configuration. For details about defining
and applying parallel configurations, see “Programming with User
Configurations” on page 6-16.

Note If you specify the scheduler option without the
configuration option, no configuration is used, so no configuration
properties are applied to the object.

out findResource('scheduler', 'type', 'SchedType') and

out = findResource('worker') return an array, out, containing
objects representing all available parallel computing schedulers of the
given type, or workers. SchedType can be 'jobmanager', 'local’,
"hpcserver', 'LSF', 'pbspro', 'torque', 'mpiexec', or any string
starting with 'generic'. A 'local' scheduler queues jobs for running
on workers that it will start on your local client machine. You can

use different scheduler types starting with 'generic' to identify one
generic scheduler or configuration from another. You can have multiple
scheduler objects to simultaneously support several job managers or
generic schedulers, but you cannot create more than one object for each
type of fully supported third-party scheduler or the local scheduler. For
third-party and generic schedulers, job data is stored in the location
specified by the scheduler object’s DataLocation property.

out = findResource('scheduler', 'type', 'jobmanager',
"LookupURL', 'host:port') and

out = findResource('worker', 'LookupURL', 'host:port') use the
lookup process of the job manager running at a specific location. The

13-93

findResource

Remarks

13-94

lookup process is part of a job manager. By default, findResource uses
all the lookup processes that are available to the local machine via
multicast. If you specify 'LookupURL' with a host, findResource uses
the job manager lookup process running at that location. The port is
optional, and is necessary only if the lookup process was configured to
use a port other than the default BASEPORT setting of the mdce_def file.
This URL is where the lookup is performed from, it is not necessarily
the host running the job manager or worker. This unicast call is
useful when you want to find resources that might not be available via
multicast or in a network that does not support multicast.

Notes Although Version 4 of the Parallel Computing Toolbox and
MATLAB Distributed Computing Server products continue to support
multicast communications between their processes, multicast is not
recommended and might not be supported in future releases.

findResource ignores LookupURL when finding third-party schedulers.

out = findResource(... ,'p?1', vi1, 'p2', v2,...) returns an
array, out, of resources whose property names and property values
match those passed as parameter-value pairs, p7, v1, p2, v2.

Note that the property value pairs can be in any format supported by
the set function.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example,

if get returns the Name property value as 'MyJobManager', then
findResource will not find that object if searching for a Name property
value of 'myjobmanager'.

Note that it is permissible to use parameter-value string pairs,
structures, parameter-value cell array pairs, and configurations in the
same call to findResource.

findResource

Examples

See Also

Find a particular job manager by its name and host.

jm1 = findResource('scheduler', 'type', 'jobmanager’,
‘Name', 'ClusterQueuel');

Find all job managers. In this example, there are four.

all_job_managers = findResource('scheduler','type','jobmanager')

all_job_managers
distcomp.jobmanager: 1-by-4

Find all job managers accessible from the lookup service on a particular
host.

jms = findResource('scheduler', 'type', 'jobmanager’,
"LookupURL', 'host234');

Find a particular job manager accessible from the lookup service on
a particular host. In this example, subnet2.hostalpha port 6789 is
where the lookup is performed, but the job manager named SN2Jdmgr
might be running on another machine.

jm = findResource('scheduler', 'type', 'jobmanager', ...
'LookupURL"', 'subnet2.hostalpha:6789', 'Name', 'SN2JMgr');

Find the Platform LSF scheduler on the network.

1sf_sched = findResource('scheduler', 'type', 'LSF")

Create a local scheduler that will start workers on the client machine
for running your job.

local_sched = findResource('scheduler', 'type',‘'local')

findJob, findTask

13-95

findTask

Purpose

Syntax

Arguments

Description

13-96

Task objects belonging to job object

tasks = findTask(obj)
[pending running finished] = findTask(obj)
tasks = findTask(obj,'p7',vi,'p2',v2,...)

obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is
pending.

running Array of tasks in job obj whose State is
running.

finished Array of tasks in job obj whose State is
finished.

pi, p2 Task object properties to match.

v, v2 Values for corresponding object properties.

tasks = findTask(obj) gets a 1-by-N array of task objects belonging
to a job object obj Tasks in the array are ordered by the ID property of
the tasks, indicating the sequence in which they were created.

[pending running finished] = findTask(obj) returns arrays of

all task objects stored in the job object obj, sorted by state. Within
each state (pending, running, and finished), the tasks are returned in
sequence of creation.

tasks = findTask(obj,'p?7',v1,'p2',v2,...) getsa 1-by-N array
of task objects belonging to a job object obj. The returned task objects
will be only those having the specified property-value pairs.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure

findTask

Remarks

Examples

See Also

field names are object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyTask, then findTask will not find
that object while searching for a Name property value of mytask.

If obj is contained in a remote service, findTask will result in a call to
the remote service. This could result in findTask taking a long time to
complete, depending on the number of tasks retrieved and the network
speed. Also, if the remote service is no longer available, an error will
be thrown.

Create a job object.
jm = findResource('scheduler', 'type','jobmanager',
‘name', 'MyJdobManager', 'LookupURL"', 'dJobMgrHost"');
obj = createdob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

createdob, createTask, findJob

13-97

for

Purpose

Syntax

Description

13-98

for-loop over distributed range

FOR variable = drange(colonop)
statement
statement

end

The general format is

FOR variable = drange(colonop)
statement
statement
end
The colonop is an expression of the form start:increment:finish
or start:finish. The default value of increment is 1. The colonop
is partitioned by codistributed.colon into numlabs contiguous

segments of nearly equal length. Each segment becomes the iterator for
a conventional for-loop on an individual lab.

The most important property of the loop body is that each iteration must
be independent of the other iterations. Logically, the iterations can be
done in any order. No communication with other labs is allowed within
the loop body. The functions that perform communication are gop, gcat,
gplus, codistributor, codistributed, gather, and redistribute.

It is possible to access portions of codistributed arrays that are local to
each lab, but it is not possible to access other portions of codistributed
arrays.

The break statement can be used to terminate the loop prematurely.

for

Examples Find the rank of magic squares. Access only the local portion of a
codistributed array.

r = zeros(1, 40, codistributor());
for n = drange(1:40)

r(n) = rank(magic(n));
end

r = gather(r);

Perform Monte Carlo approximation of pi. Each lab is initialized to a
different random number state.

m = 10000;

for p = drange(1:numlabs)
z = rand(m, 1) + i*rand(m, 1);
c = sum(abs(z) < 1)

end
k = gplus(c)
p = 4*k/(m*numlabs);

Attempt to compute Fibonacci numbers. This will not work, because the
loop bodies are dependent.

f = zeros(1, 50, codistributor());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)
f(n) = f(n - 1) + f(n - 2)
end

See Also for MATLAB function reference page

numlabs, parfor

13-99

gather

Purpose

Syntax

Description

Remarks

Examples

13-100

Transfer distributed array data to local workspace

X = gather(A)
X = gather(C, lab)
X = gather(A) can operate inside an spmd statement, pmode, or

parallel job to gather together the data of a codistributed array, or
outside an spmd statement to gather the data of a distributed array.
If you execute this inside an spmd statement, pmode, or parallel job,
X is replicated array with all the data of the array on every lab. If
you execute this outside an spmd statement, X is an array in the local
workspace, with the data transferred from the multiple labs.

X = gather(distributed(X)) or X = gather(codistributed (X))
returns the original array X.

X = gather(C, lab) converts a codistributed array C to a variant
array X, such that all of the data is contained on lab lab, and X is a
0-by-0 empty double on all other labs.

Note that gather assembles the codistributed or distributed array in
the workspaces of all the labs on which it executes, or on the MATLAB
client, respectively, but not both. If you are using gather within an
spmd statement, the gathered array is accessible on the client via its
corresponding Composite object; see “Accessing Data with Composites”
on page 3-7. If you are running gather in a parallel job, you can return
the gathered array to the client as an output argument from the task.

As the gather function requires communication between all the labs,
you cannot gather data from all the labs onto a single lab by placing the
function inside a conditional statement such as if labindex ==

Distribute a magic square across your labs, then gather the whole
matrix onto every lab and then onto the client. This code results in the
equivalent of M = magic(n) on all labs and the client.

n = 10;
spmd

gather

D
M

codistributed(magic(n));
gather(D) % Gather data on all labs

end
M = gather(D) % Gather data on client

Gather all of the data in D onto lab 1, so that it can be saved from there.

n = 10;
spmd
D = codistributed(magic(n));
out = gather(D, 1);
if labindex ==
save data.mat out;
end
end

Gather all of the data from a distributed array into D on the client.

n = 10;
D = distributed(magic(n)); % Distribute data to labs
M gather (D) % Return data to client

See Also codistributed, pmode

13-101

gcat

Purpose

Syntax

Description

Examples

See Also

13-102

Global concatenation

Xs = gcat(X)
Xs = gcat(X, dim)
Xs = gcat(X) concatenates the variant arrays X from each lab in the

second dimension. The result is replicated on all labs.

Xs = gcat(X, dim) concatenates the variant arrays X from each lab
in the dim-th dimension.

With four labs,

Xs = gcat(labindex)
returns Xs = [1 2 3 4] on all four labs.

cat MATLAB function reference page

gop, labindex, numlabs

get

Purpose

Syntax

Arguments

Description

Remarks

Object properties

get(obj)
out = get(obj)
out = get(obj, 'PropertyName')

obj An object or an array of objects.
‘PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property
values, or a cell array of property values.

get(obj) returns all property names and their current values to the
command line for obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that

property.

out = get(obj, 'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array

of objects, then out will be an m-by-n cell array of property values
where m is equal to the length of obj and n is equal to the number of
properties specified.

When specifying a property name, you can do so without regard to case,
and you can make use of property name completion. For example, if jm
1s a job manager object, then these commands are all valid and return
the same result.

out = get(jm, 'HostAddress');
out = get(jm, 'hostaddress');
out get(jm, 'HostAddr');

13-103

get

Examples This example illustrates some of the ways you can use get to return
property values for the job object j1.

get(j1,'State’)
ans =
pending

get(j1, 'Name')
ans =
MyJobManager_job

out = get(j1);
out.State

ans =

pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)

ans =
'pending'’ 'MyJobManager_job'

See Also inspect, set

13-104

getAllOutputArguments
|

Purpose Output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments obj Job object whose tasks generate output arguments.
data M-by-N cell array of job results.

Description data = getAllOutputArguments(obj) returns data, the output data

contained in the tasks of a finished job. If the job has M tasks, each row
of the M-by-N cell array data contains the output arguments for the
corresponding task in the job. Each row has N columns, where N is the
greatest number of output arguments from any one task in the job. The
N elements of a row are arrays containing the output arguments from
that task. If a task has less than N output arguments, the excess arrays
in the row for that task are empty. The order of the rows in data will be
the same as the order of the tasks contained in the job.

Remarks If you are using a job manager, getAl1l0utputArguments results in
a call to a remote service, which could take a long time to complete,
depending on the amount of data being retrieved and the network speed.
Also, if the remote service is no longer available, an error will be thrown.

Note that issuing a call to getAl10utputArguments will not remove the
output data from the location where it is stored. To remove the output
data, use the destroy function to remove the individual task or their
parent job object.

The same information returned by getAllOutputArguments can be
obtained by accessing the OutputArguments property of each task in
the job.

Examples Create a job to generate a random matrix.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost');

13-105

getAllOutputArguments

j createdob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);

data = getAllOutputArguments(j);

Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit

13-106

getCodistributor

Purpose
Syntax

Description

Examples

Codistributor object for existing codistributed array

codist

codist

= getCodistributor(D)

getCodistributor (D) returns the codistributor object

of codistributed array D. Properties of the object are Dimension

and Partition for 1-D distribution; and BlockSize, LabGrid, and
Orientation for 2-D block cyclic distribution. For any one codistributed
array, getCodistributor returns the same values on all labs. The
returned codistributor object is complete, and therefore suitable as an
input argument for codistributed.build.

Get the codistributor object for a 1-D codistributed array that uses
default distribution on 4 labs:

spmd (4)

end

I1 = codistributed.eye(64, codistributorid());
codist1 = getCodistributor(I1)

dim = codisti.Dimension

partn = codisti1.Partition

Get the codistributor object for a 2-D block cyclic codistributed array
that uses default distribution on 4 labs:

spmd (4)

end

I2 = codistributed.eye(128, codistributor2dbc());
codist2 = getCodistributor(I2)

blocksz = codist2.BlockSize

partn = codist2.LabGrid

ornt = codist2.0rientation

Demonstrate that these codistributor objects are complete:

spmd (4)

isComplete(codist1)

13-107

getCodistributor

isComplete(codist2)
end

See Also codistributed, codistributed.build, getLocalPart, redistribute

13-108

getCurrentJob

Purpose

Syntax

Arguments

Description
Remarks

See Also

Job object whose task i1s currently being evaluated

job = getCurrentdJdob

job The job object that contains the task currently being
evaluated by the worker session.

job = getCurrentdJob returns the job object that is the Parent of the
task currently being evaluated by the worker session.

If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

getCurrentdobmanager, getCurrentTask, getCurrentWorker,
getFileDependencyDir

13-109

getCurrentJobmanager

Purpose

Syntax

Arguments

Description

Remarks

See Also

13-110

Job manager object that scheduled current task

jm = getCurrentJobmanager

jm The job manager object that scheduled the task currently
being evaluated by the worker session.

jm = getCurrentdobmanager returns the job manager object that has
sent the task currently being evaluated by the worker session. jmis the
Parent of the task’s parent job.

If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

If your tasks are scheduled by a third-party scheduler instead of a job
manager, getCurrentdJobmanager returns a distcomp.taskrunner
object.

getCurrentdob, getCurrentTask, getCurrentWorker,
getFileDependencyDir

getCurrentTask

Purpose

Syntax

Arguments

Description
Remarks

See Also

Task object currently being evaluated in this worker session

task = getCurrentTask

task The task object that the worker session is currently
evaluating.

task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

getCurrentdob, getCurrentdobmanager, getCurrentWorker,
getFileDependencyDir

13-111

getCurrentWorker

Purpose

Syntax

Arguments

Description

Remarks

Examples

See Also

13-112

Worker object currently running this session

worker = getCurrentWorker

worker The worker object that is currently evaluating the task
that contains this function.

worker = getCurrentWorker returns the worker object representing
the session that is currently evaluating the task that calls this function.

If the function is executed in a MATLAB session that is not a worker
or if you are using a third-party scheduler instead of a job manager,
you get an empty result.

Create a job with one task, and have the task return the name of the
worker that evaluates it.

jm = findResource('scheduler', 'type', 'jobmanager', ...
‘name', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j createdob(jm);
t createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t, 'OutputArgument')
ans =
'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is
evaluating the task. Then the task function uses get to examine

the Name property value of that object. The result is placed in the
OutputArgument property of the task.

getCurrentdob, getCurrentJobmanager, getCurrentTask,
getFileDependencyDir

getDebuglog

Purpose

Syntax

Arguments

Description

Examples

Read output messages from job run by supported third-party or local
scheduler

str = getDebuglLog(sched, job_or_task)

str Variable to which messages are returned as a
string expression.

sched Scheduler object referring to mpiexec, Microsoft
Windows HPC Server (or CCS), Platform LSF,
PBS Pro, or TORQUE scheduler, created by
findResource.

job_or_task Object identifying job, parallel job, or task whose
messages you want.

str = getDebugLog(sched, job_or_task) returns any output written
to the standard output or standard error stream by the job or task
identified by job_or_task, being run by the scheduler identified by
sched. You cannot use this function to retrieve messages from a task if
the scheduler is mpiexec.

Construct a scheduler object so you can create a parallel job. Assume
that you have already defined a configuration called mpiexec to define
the properties of the scheduler object.

mpiexecObj = findResource('scheduler', 'Configuration', 'mpiexec');

Create and submit a parallel job.

job = createParallelJob(mpiexecObj);
createTask(job, @labindex, 1, {});
submit(job);

Look at the debug log.

getDebuglLog(mpiexecObj, job);

13-113

getDebuglog

See Also findResource, createdob, createParalleldob, createTask

13-114

getFileDependencyDir

Purpose

Syntax

Arguments

Description

Examples

See Also

Directory where FileDependencies are written on worker machine

depdir = getFileDependencyDir

depdir String indicating directory where FileDependencies
are placed.

depdir = getFileDependencyDir returns a string, which is the path
to the local directory into which FileDependencies are written. This
function will return an empty array if it is not called on a MATLAB
worker.

Find the current directory for FileDependencies.
ddir = getFileDependencyDir;
Change to that directory to invoke an executable.
cdir = cd(ddir);
Invoke the executable.
[OK, output] = system('myexecutable');
Change back to the original directory.
cd(cdir);

Functions

getCurrentdob, getCurrentdobmanager, getCurrentTask,
getCurrentWorker

Properties

FileDependencies

13-115

getJobSchedulerData

Purpose Get specific user data for job on generic scheduler
Syntax userdata = getJobSchedulerData(sched, job)
Arguments userdata Information that was previously stored for this job.
sched Scheduler object identifying the generic third-party
scheduler running the job.
job Job object identifying the job for which to retrieve data.
Description userdata = getJobSchedulerData(sched, job) returns data

stored for the job job that was derived from the generic scheduler
sched. The information was originally stored with the function
setJobSchedulerData. For example, it might be useful to store the
third-party scheduler’s external ID for this job, so that the function
specified in GetJobStateFcn can later query the scheduler about the
state of the job.

To use this feature, you should call the function setJobSchedulerData
in the submit function (identified by the SubmitFcn property) and

call getJobSchedulerData in any of the functions identified by

the properties GetJobStateFcn, DestroyJobFcn, DestroyTaskFcn,
CanceldobFcn, or CancelTaskFcn.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

See Also setJobSchedulerData

13-116

getLocalPart

Purpose Local portion of codistributed array

Syntax L = getLocalPart(A)

Description L

getLocalPart (A) returns the local portion of a codistributed array.

Examples With four labs,

A
D
L

magic(4); %sreplicated on all labs
codistributed (A, codistributorid(1));
getLocalPart(D)

returns

Lab 1:
Lab 2:
Lab 3:
Lab 4:

[16 2 3 13]
=[5 1110 8]
[9 7 6 12]
[414 15 1]

| i e i

See Also codistributed, codistributor

13-117

globalindices

Purpose

Syntax

Description

Examples

13-118

Global indices for local part of codistributed array

K globalIndices (R, dim)

K globalIndices (R, dim, lab)

[E,F] = globalIndices(R, dim)

[E,F] = globalIndices(R, dim, lab)

K = codist.globalIndices(dim, lab)
[E,F] = codist.globalIndices(dim, lab)

globalIndices tell you the relationship between indices on a local
part and the corresponding index range in a given dimension on the
distributed array. The globalIndices method on a codistributor object
allows you to get this relationship without actually creating the array.

K = globalIndices(R, dim) or K = globalIndices(R, dim, lab)
returns a vector K so that getLocalPart(R) = R(...,K,...) inthe
specified dimension dim on the specified lab. If the lab argument is
omitted, the default is labindex.

[E,F] = globalIndices(R, dim) or [E,F] = globalIndices(R,
dim, lab) returns two integers E and F so that getLocalPart(R) =
R(...,E:F,...) in the specified dimension dim on the specified lab. If
the lab argument is omitted, the default is labindex.

K = codist.globallndices(dim, lab) is the same as K =
globalIndices (R, dim, lab), where codist is the codistributor for R,
or codist = getCodistributor(R). This allows you to get the global
indices for a codistributed array without having to create the array
itself.

[E,F] = codist.globalIndices(dim, lab) is the same as [E,F] =
globalIndices (R, dim, lab), where codist is the codistributor for R,
or codist = getCodistributor(R). This allows you to get the global
indices for a codistributed array without having to create the array
itself.

Create a 2-by-22 codistributed array among four labs, and view the
global indices on each lab:

globalindices

spmd
D = codistributed.zeros(2, 22, codistributorid(2,[6 6 5 5]));

if labindex ==
K = globallIndices(D, 2); % returns K

1}
-y
(o]

elseif labindex ==

[E,F] = globalIndices(D, 2); % returns E = 7, F = 12.
end
K = globalIndices(D, 2, 3); % returns K 13:17.
[E,F] = globalIndices(D, 2, 4); % returns E = 18, F = 22.

end

Use globallIndices toload data from a file and construct a codistributed
array distributed along its columns, i.e., dimension 2. Notice how
globalIndices makes the code not specific to the number of labs and
alleviates you from calculating offsets or partitions.

spmd
siz = [1000, 1000];
codistr = codistributorid(2, [], siz);

% Use globalIndices to figure out which columns
% each lab should load.
[firstCol, lastCol] = codistr.globalIndices(2);

o°

Call user-defined function readRectangleFromFile to
% load all the values that should go into
% the local part for this 1lab.
labLocalPart = readRectangleFromFile(fileName,
1, siz(1), firstCol, lastCol);

% With the local part and codistributor,
% construct the corresponding codistributed array.

D = codistributed.build(labLocalPart, codistr);
end

See Also getLocalPart, labindex

13-119

gop

Purpose

Syntax

Arguments

Description

Examples

13-120

Global operation across all labs

res = gop(@F, x)
res = gop(@F, x, targetlab)
F Function to operate across labs.
X Argument to function F, should be same variable on all
labs, but can have different values.
res Variable to hold reduction result.

targetlab Lab to which reduction results are returned.

res = gop(@F, x) isthe reduction via the function F of the quantities
x from each lab. The result is duplicated on all labs.

The function F(x,y) should accept two arguments of the same type and
produce one result of that type, so it can be used iteratively, that is,

F(F(x1,x2),F(x3,x4))
The function F should be associative, that is,
F(F(x1, x2), x3) = F(x1, F(x2, x3))

res = gop(@F, x, targetlab) performs the reduction, and places
the result into res on the lab indicated by targetlab. res is set to
[]1 on all other labs.

Calculate the sum of all labs’ value for x.
res = gop(@plus,x)
Find the maximum value of x among all the labs.

res = gop(@max,x)

gop

Perform the horizontal concatenation of x from all labs.

res = gop(@horzcat,x)
Calculate the 2-norm of x from all labs.

res = gop(@(ai,a2)norm([al a2]),x)

See Also labBarrier, numlabs

13-121

gplus

Purpose Global addition
Syntax s = gplus(x)
Description s = gplus(x) returns the addition of the x from each lab. The result is

replicated on all labs.

Examples With four labs,
s = gplus(labindex)

returns s = 1 + 2 + 3 + 4 = 10 on all four labs.

See Also gop, labindex

13-122

help

Purpose

Syntax

Arguments

Description

Examples

See Also

Help for toolbox functions in Command Window

help class/function

class A Parallel Computing Toolbox object class:
distcomp.jobmanager, distcomp. job, or
distcomp.task.

function A function for the specified class. To see what
functions are available for a class, see the methods
reference page.

help class/function returns command-line help for the specified
function of the given class.

If you do not know the class for the function, use class(obj), where
function is of the same class as the object obj.

Get help on functions from each of the Parallel Computing Toolbox
object classes.

help distcomp.jobmanager/createdob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =

distcomp.job
help distcomp.job/createTask

methods

13-123

inspect

Purpose

Syntax
Arguments

Description

Remarks

13-124

Open Property Inspector

inspect(obj)

obj An object or an array of objects.

inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for the object obj.

You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To
refresh the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In

the figure of the example below, the Tasks property is expanded to
enumerate the individual task objects that make up this property.

These individual task objects can also be expanded to display their
own properties.

inspect

Examples

See Also

Open the Property Inspector for the job object j1.

inspect(j1)

E Property Inspector: distcomp.job

|2

F

Canfiguration

CreateTime

FileD ependencies
FirighTime

D

JobData

b aximurnhumberQfs/orkers
Minimurnt umber0 R/ oders
M ame

Parent

FathD ependencies
Restart'orker

StartTime

State

SubmitTime

Tag

Tasks

Tasks

Tasks

Tirmeout

LlserData P

—_—

get, set

Mo Dec 11 152457 EST 2.

ﬂ [0x0 double array]
Irfinity
1.0
Jobrl

diztcomp. jobmanager

i [False

pending

Infirity

[0 doublg anay] e

&

%

13-125

isa

Purpose
Syntax

Description

Examples

See Also

13-126

True if object is of specified class
tf = isa(X, 'codistributed')

tf = isa(X, 'codistributed') returns true if X is a codistributed
array, or false otherwise. For a description of a codistributed array,
see “Array Types” on page 5-2.

L = ones(100, 1)

D = ones(100, 1, codistributor())

tf = isa(L, 'codistributed') % returns false
tf = isa(D, 'codistributed') % returns true

isa MATLAB function reference page

codistributed, codistributor

iscodistributed

Purpose
Syntax

Description

Examples

See Also

True for codistributed array

tf = iscodistributed(X)

tf

iscodistributed(X) returns true for a codistributed array, or

false otherwise. For a description of codistributed arrays, see “Array
Types” on page 5-2.

With an open MATLAB pool,

spmd

end

L ones (100, 1);

D codistributed.ones (100, 1);
iscodistributed(L) % returns false
iscodistributed(D) % returns true

isdistributed

13-127

isComplete

Purpose
Syntax

Description

See Also

13-128

True if codistributor object is complete

tf = isComplete(codist)

tf isComplete(codist) returns true if codist is a completely
defined codistributor, or false otherwise. For a description of
codistributed arrays, see “Array Types” on page 5-2.

isa MATLAB function reference page

codistributed, codistributor

isdistributed

Purpose
Syntax

Description

Examples

See Also

True for distributed array

tf = isdistributed(X)

tf isdistributed(X) returns true for a distributed array, or false
otherwise. For a description of a distributed array, see “Array Types”
on page 5-2.

With an open MATLAB pool,

L ones (100, 1);

D distributed.ones(100, 1);
isdistributed(L) % returns false
isdistributed(D) % returns true

iscodistributed

13-129

isreplicated

Purpose
Syntax

Description

Remarks

Examples

See Also

13-130

True for replicated array

tf = isreplicated(X)

tf = isreplicated(X) returns true for a replicated array, or false
otherwise. For a description of a replicated array, see “Array Types” on
page 5-2. isreplicated also returns true for a Composite X if all its
elements are identical.

isreplicated(X) requires checking for equality of the array X across
all labs. This might require extensive communication and time.
isreplicated is most useful for debugging or error checking small
arrays. A codistributed array is not replicated.

With an open MATLAB pool,

spmd
A = magic(3);
t = isreplicated(A) % returns t = true
B = magic(labindex);
f = isreplicated(B) % returns f = false
end

isa, iscodistributed, isdistributed

jobStartup

Purpose

Syntax
Arguments

Description

See Also

M-file for user-defined options to run when job starts

jobStartup(job)

job The job for which this startup is being executed.

jobStartup(job) runs automatically on a worker the first time the
worker evaluates a task for a particular job. You do not call this
function from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/jobStartup.m
You add M-code to the file to define job initialization actions to be
performed on the worker when it first evaluates a task for this job.

Alternatively, you can create a file called jobStartup.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed jobStartup.m file.

Functions

taskFinish, taskStartup

Properties

FileDependencies

13-131

labBarrier

Purpose
Syntax

Description

Examples

See Also

13-132

Block execution until all labs reach this call
labBarrier

labBarrier blocks execution of a parallel algorithm until all labs have
reached the call to 1abBarrier. This is useful for coordinating access to
shared resources such as file /0.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

In this example, all labs know the shared data filename.
fname = 'c:\data\datafile.mat';
Lab 1 writes some data to the file, which all other labs will read.

if labindex == 1

data = randn(100, 1);

save(fname, 'data');

pause(5) %allow time for file to become available to other labs
end

All labs wait until all have reached the barrier; this ensures that no lab
attempts to load the file until lab 1 writes to it.

labBarrier;
load(fname);

labBroadcast, 1labReceive, 1labSend

labBroadcast

Purpose

Syntax

Arguments

Description

Examples

Send data to all labs or receive data sent to all labs

shared_data = labBroadcast(senderlab, data)
shared_data labBroadcast(senderlab)

senderlab The labindex of the lab sending the broadcast.

data The data being broadcast. This argument is
required only for the lab that is broadcasting.
The absence of this argument indicates that a
lab is receiving.

shared_data The broadcast data as it is received on all other
labs.

shared_data = labBroadcast(senderlab, data) sends the specified
data to all executing labs. The data is broadcast from the lab with
labindex == senderlab, and received by all other labs.

shared_data = labBroadcast(senderlab) receives on each executing
lab the specified shared_data that was sent from the lab whose
labindex is senderlab.

If labindex is not senderlab, then you do not include the data
argument. This indicates that the function is to receive data, not
broadcast it. The received data, shared_data, is identical on all labs.

This function blocks execution until the lab’s involvement in the
collective broadcast operation is complete. Because some labs may
complete their call to labBroadcast before others have started, use
labBarrier to guarantee that all labs are at the same point in a
program.

In this case, the broadcaster is the lab whose labindex is 1.
broadcast_id = 1;

if labindex == broadcast_id
data = randn(10);

13-133

labBroadcast

shared_data labBroadcast(broadcast_id, data);

else
shared_data = labBroadcast(broadcast_id);
end
See Also labBarrier, labindex

13-134

labindex

Purpose Index of this lab
Syntax id = labindex
Description id = labindex returns the index of the lab currently executing the

function. labindex is assigned to each lab when a job begins execution,
and applies only for the duration of that job. The value of labindex
spans from 1 to n, where n is the number of labs running the current
job, defined by numlabs.

See Also numlabs

13-135

labProbe

Purpose

Syntax

Arguments

Description

See Also

13-136

Test to see if messages are ready to be received from other lab

is_data_available =
is_data_available =
is_data_available =
is_data_available =
[is_data_available,

source

tag

any

is_data_available

is_data_available =

labProbe
labProbe(source)
labProbe('any',tag)
labProbe(source,tag)
source, tag] = labProbe

labindex of a particular lab from which to
test for a message.

Tag defined by the sending lab’s 1abSend
function to identify particular data.

String to indicate that all labs should be
tested for a message.

Boolean indicating if a message is ready to
be received.

labProbe returns a logical value indicating

whether any data is available for this lab to receive with the 1abReceive

function.

is_data_available =
from the specified lab.

is_data_available =

labProbe(source) tests for a message only

labProbe('any',tag) tests only for a message

with the specified tag, from any lab.

is_data_available =

labProbe (source,tag) tests for a message

from the specified lab and tag.

[is_data_available,

source, tag] = labProbe returns labindex

and tag of ready messages. If no data is available, source and tag

are returned as [].

labindex, labReceive,

labSend

labReceive

Purpose

Syntax

Arguments

Description

Remarks

Receive data from another lab

data = labReceive

data = labReceive(source)

data = labReceive('any',tag)
data = labReceive(source,tag)
[data, source, tag] = labReceive

source labindex of a particular lab from which to
receive data.

tag Tag defined by the sending lab’s 1abSend
function to identify particular data.

any String to indicate that data can come from any
lab.
data Data sent by the sending lab’s 1abSend function.

data = labReceive receives data from any lab with any tag.

data = labReceive(source) receives data from the specified lab with
any tag

data = labReceive('any',tag) receives data from any lab with the
specified tag.

data = labReceive(source,tag) receives data from only the specified
lab with the specified tag.

[data, source, tag] = labReceive returns the source and tag with
the data.

This function blocks execution in the lab until the corresponding call to
labSend occurs in the sending lab.

For a demonstration that uses 1labSend, 1labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

13-137

labReceive

See Also labBarrier, labindex, labProbe, 1labSend

13-138

labSend

Purpose

Syntax

Arguments

Description

Remarks

See Also

Send data to another lab

labSend(data, destination)
labSend(data, destination, tag)

data Data sent to the other lab; any MATLAB data
type.

destination labindex of receiving lab.

tag Nonnegative integer to identify data.

labSend(data, destination) sends the data to the specified
destination, with a tag of 0.

labSend(data, destination, tag) sends the data to the specified
destination with the specified tag. data can be any MATLAB data
type. destination identifies the labindex of the receiving lab, and
must be either a scalar or a vector of integers between 1 and numlabs;
it cannot be labindex (i.e., the current lab). tag can be any integer
from 0 to 32767.

This function might return before the corresponding labReceive
completes in the receiving lab.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

labBarrier, labindex, 1labProbe, 1labReceive, numlabs

13-139

labSendReceive

Purpose

Syntax

Arguments

Description

13-140

Simultaneously send data to and receive data from another lab

received = labSendReceive(labTo, labFrom, data)

received = labSendReceive(labTo, labFrom, data, tag)
data Data on the sending lab that is sent to the
receiving lab; any MATLAB data type.
received Data accepted on the receiving lab.
labTo labindex of the lab to which data is sent.
labFrom labindex of the lab from which data is received.
tag Nonnegative integer to identify data.

received = labSendReceive(labTo, labFrom, data) sends data to
the lab whose labindex is 1labTo, and receives received from the lab
whose labindex is labFrom. 1labTo and labFrom must be scalars. This
function is conceptually equivalent to the following sequence of calls:

labSend(data, labTo);
received = labReceive(labFrom);

with the important exception that both the sending and receiving of
data happens concurrently. This can eliminate deadlocks that might
otherwise occur if the equivalent call to labSend would block.

If 1abTo is an empty array, labSendReceive does not send data, but
only receives. If 1labFrom is an empty array, labSendReceive does not
receive data, but only sends.

received = labSendReceive(labTo, labFrom, data, tag) uses
the specified tag for the communication. tag can be any integer from
0 to 32767.

For a demonstration that uses 1abSend, 1labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

labSendReceive

Examples

Create a unique set of data on each lab, and transfer each lab’s data one
lab to the right (to the next higher labindex).

First use magic to create a unique value for the variant array mydata
on each lab.

mydata = magic(labindex)

1: mydata =

1: 1

2: mydata =

2: 1 3

2: 4 2

3: mydata =

3: 8 1 6
3: 3 5 7
3: 4 9 2

Define the lab on either side, so that each lab will receive data from the
lab on the “left” while sending data to the lab on the “right,” cycling
data from the end lab back to the beginning lab.

labTo = mod(labindex, numlabs) + 1; % one lab to the right
labFrom = mod(labindex - 2, numlabs) + 1; % one lab to the left

Transfer the data, sending each lab’s mydata into the next lab’s
otherdata variable, wrapping the third lab’s data back to the first lab.

otherdata = labSendReceive(labTo, labFrom, mydata)
1: otherdata =

1: 8 1 6
1: 3 5 7
1: 4 9 2
2: otherdata =

2: 1

3: otherdata =

3: 1 3

3: 4 2

13-141

labSendReceive

Transfer data to the next lab without wrapping data from the last lab
to the first lab.

if labindex < numlabs; labTo = labindex + 1; else labTo = []; end;
if labindex > 1; labFrom = labindex - 1; else labFrom = []; end;
otherdata = labSendReceive(labTo, labFrom, mydata)

1: otherdata
[1]
: otherdata
1
: otherdata
1 3
4 2

W W w NN =

See Also labBarrier, labindex, labProbe, 1labReceive, 1labSend numlabs

13-142

length

Purpose

Syntax
Arguments

Description

Examples

See Also

Length of object array

length(obj)

obj An object or an array of objects.

length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =
9

size

13-143

load

Purpose

Syntax

Arguments

Description

Examples

13-144

Load workspace variables from batch job

load(job)

load(job, 'X")

load(job, 'X', 'Y', 'Z*")

load(job, '-regexp', 'PAT1', 'PAT2'")
S = load(job ...)

job Job from which to load workspace variables.

XU,y Variables to load from the job. Wildcards allow

AR pattern matching in MAT-file style.

'-regexp' Indication to use regular expression pattern
matching.

S Struct containing the variables after loading.

load(job) retrieves all variables from a batch job and assigns them
into the current workspace. If the job is not finished, or if the job
encountered an error while running, load will throw an error.

load(job, 'X') loads only the variable named X from the job.

load(job, 'X', 'Y', 'Z*') loads only the specified variables. The
wildcard ' *' loads variables that match a pattern (MAT-file only).

load(job, '-regexp', 'PAT1', 'PAT2') can be used to load all
variables matching the specified patterns using regular expressions.
For more information on using regular expressions, type doc regexp
at the command prompt.

S = load(job ...) returns the contents of job into variable S, which
1s a struct containing fields matching the variables retrieved.

Run a batch job and load its results into your client workspace.

j = batch('myScript');

load

wait(j)
load(j)

Load only variables whose names start with 'a'.

load(job, 'a*')

Load only variables whose names contain any digits.

load(job, '-regexp', '\d')

See Also batch, getAllOutputArguments

13-145

matlabpool

Purpose

Syntax

Description

13-146

Open or close pool of MATLAB sessions for parallel computation

matlabpool

matlabpool open

matlabpool open poolsize

matlabpool open configname

matlabpool open configname poolsize
matlabpool poolsize

matlabpool configname

matlabpool configname poolsize

matlabpool close

matlabpool close force

matlabpool close force configname
matlabpool size

matlabpool('open', ...)
matlabpool('close', ...)

matlabpool(open ,..., FileDependencies , filecell)
matlabpool(addfiledependencies , filecell)
matlabpool updatefiledependencies

matlabpool enables the parallel language features in the MATLAB
language (e.g., parfor) by starting a parallel job that connects this
MATLAB client with a number of labs.

matlabpool or matlabpool open starts a worker pool using the default
parallel configuration, with the pool size specified by that configuration.
(For information about setting up and selecting parallel configurations,
see “Programming with User Configurations” on page 6-16.) You can
also specify the pool size using matlabpool open poolsize, but most
schedulers have a maximum number of processes that they can start (8
for a local scheduler). If the configuration specifies a job manager as the
scheduler, matlabpool reserves its workers from among those already
running and available under that job manager. If the configuration
specifies a third-party scheduler, matlabpool instructs the scheduler
to start the workers.

matlabpool open configname or matlabpool open configname
poolsize starts a worker pool using the Parallel Computing Toolbox

matlabpool

user configuration identified by configname rather than the default
configuration to locate a scheduler. If the pool size is specified, it
overrides the maximum and minimum number of workers specified in
the configuration, and starts a pool of exactly that number of workers,
even if it has to wait for them to be available.

Without specifying open or close, the command default is open. So,
matlabpool poolsize, matlabpool configname, and matlabpool
configname poolsize operate as matlabpool open ..., and are
provided for convenience.

matlabpool close stops the worker pool, destroys the parallel job, and
makes all parallel language features revert to using the MATLAB client
for computing their results.

matlabpool close force destroys all parallel jobs created by
matlabpool for the current user under the scheduler specified by the
default configuration, including any jobs currently running.

matlabpool close force configname destroys all parallel jobs being
run under the scheduler specified in the configuration configname.

matlabpool size returns the size of the worker pool if it is open, or 0
if the pool is closed.

matlabpool('open', ...) and matlabpool('close', ...) can be
invoked as functions with optional arguments. The default is 'open'.
For example, the following are equivalent:

matlabpool open MyConfig 4
matlabpool('open', 'MyConfig', 4)

matlabpool(open ,..., FileDependencies , filecell) starts a
worker pool and allows you to specify file dependencies so that you can
pass necessary files to the workers in the pool. The cell array filecell
is appended to the FileDependencies specified in the configuration
used for startup.

matlabpool(addfiledependencies , filecell) allows you to add
extra file dependencies to an already running pool. filecell is a cell
array of strings, identical in form to those you use when adding file

13-147

matlabpool

Remarks

13-148

dependencies to a job or when you open a MATLAB pool. Each string
can specify either absolute or relative files, directories, or a file on
the MATLAB path. The command transfers the files to each worker,
placing the files in the file dependencies directory, exactly the same as
if you set them at the time the pool was opened.

matlabpool updatefiledependencies checks all the file dependencies
of the current pool to see if they have changed, and replicates any
changes to each of the labs in the pool. In this way, you can send code
changes out to remote labs. This checks dependencies that you added
with the matlabpool addfiledependencies command as well as
those you specified when the pool was started (by a configuration or
command-line argument).

When a pool of workers is open, the following commands entered in the
client’s Command Window also execute on all the workers:

cd
addpath
rmpath

This enables you to set the working directory and the path on all the
workers, so that a subsequent parfor-loop executes in the proper
context.

If any of these commands does not work on the client, it is not executed
on the workers either. For example, if addpath specifies a directory that
the client cannot see or access, the addpath command is not executed on
the workers. However, if the working directory or path can be set on the
client, but cannot be set as specified on any of the workers, you do not
get an error message returned to the client Command Window.

This slight difference in behavior is an issue especially in a
mixed-platform environment where the client is not the same platform
as the workers, where directories local to or mapped from the client
are not available in the same way to the workers, or where directories
are in a nonshared file system. For example, if you have a MATLAB
client running on a Microsoft Windows operating system while the
MATLAB workers are all running on Linux® operating systems, the

matlabpool

Examples

See Also

same argument to addpath cannot work on both. In this situation, you
can use the function pctRunOnAll to assure that a command runs on
all the workers.

Start a pool using the default configuration to define the number of labs:

matlabpool

Start a pool of 16 labs using a configuration called myConf:

matlabpool open myConf 16

Start a pool of 2 labs using the local configuration:

matlabpool local 2

Run matlabpool as a function to check whether the worker pool is
currently open:

isOpen = matlabpool('size') > 0

Start a pool with the default configuration, and pass two M-files to
the workers:

matlabpool('open', 'FileDependencies', {'modi.m', 'mod2.m'})

defaultParallelConfig, pctRunOnAll, parfor

13-149

methods

Purpose

Syntax

Arguments

Description

Examples

13-150

List functions of object class

methods (obj)
out = methods(obj)

obj An object or an array of objects.

out Cell array of strings.

methods (obj) returns the names of all methods for the class of which
obj 1s an instance.

out = methods(obj) returns the names of the methods as a cell array
of strings.

Create job manager, job, and task objects, and examine what methods
are available for each.

jm = findResource('scheduler', 'type', 'jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost');
methods (jm)
Methods for class distcomp.jobmanager:
createdob demote pause resume
createParalleldob findJob promote

j1 = createdob(jm);

methods(j1)

Methods for class distcomp.job:

cancel destroy getAllQutputArguments waitForState
createTask findTask submit

t1 = createTask(j1, @rand, 1, {3});
methods (t1)

Methods for class distcomp.task:
cancel destroy waitForState

methods

See Also help, get

13-151

mpilibConf

Purpose

Syntax

Arguments

Description

Remarks

13-152

Location of MPI implementation

[primaryLib, extras] = mpiLibConf
primarylLib MPI implementation library used by a parallel
job.
extras Cell array of other required library names.

[primaryLib, extras] = mpiLibConf returns the MPI
implementation library to be used by a parallel job. primaryLib is the
name of the shared library file containing the MPI entry points. extras
is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create an M-file called
mpiLibConf, and place it on the MATLAB path. The recommended
location is matlabroot/toolbox/distcomp/user.

Under all circumstances, the MPI library must support all MPI-1
functions. Additionally, the MPI library must support null arguments
to MPI_Init as defined in section 4.2 of the MPI-2 standard. The
library must also use an mpi.h header file that is fully compatible
with MPICH2.

When used with the MathWorks job manager or the local scheduler, the
MPI library must support the following additional MPI-2 functions:

® MPI_Open_port

e MPI_Comm_accept

e MPI_Comm_connect

When used with any third-party scheduler (such as LSF or PBS Pro)

it is important to launch the workers using the version of mpiexec
corresponding to the MPI library being used. Also, you might need to

mpilibConf
|

launch the corresponding process management daemons on the cluster
before invoking mpiexec.

Examples Use the mpiLibConf function to view the current MPI implementation
library:

mpiLibConf
mpich2.d1ll

13-153

mpiprofile

Purpose Profile parallel communication and execution times

Syntax mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile resume
mpiprofile clear
mpiprofile status
mpiprofile reset
mpiprofile info
mpiprofile viewer
mpiprofile('viewer', <profinfoarray>)

Description mpiprofile enables or disables the parallel profiler data collection on
a MATLAB worker running a parallel job. mpiprofile aggregates
statistics on execution time and communication times. The statistics
are collected in a manner similar to running the profile command on
each MATLAB worker. By default, the parallel profiling extensions
include array fields that collect information on communication with
each of the other labs. This command in general should be executed in
pmode or as part of a task in a parallel job.

mpiprofile on <options> starts the parallel profiler and clears
previously recorded profile statistics.

mpiprofile takes the following options.

Option Description

-detail mmex This option specifies the set of
functions for which profiling
statistics are gathered. -detail
mmex (the default) records
information about M-functions,
M-subfunctions, and MEX-functions.
-detail builtin additionally
records information about built-in
functions such as eig or 1abReceive.

-detail builtin

13-154

mpiprofile

Option

Description

-messagedetail default

-messagedetail simplified

This option specifies the detail at
which communication information
is stored.

-messagedetail default collects
information on a per-lab instance.

-messagedetail simplified turns
off collection for *PerLab data
fields, which reduces the profiling
overhead. If you have a very

large cluster, you might want to
use this option; however, you will
not get all the detailed inter-lab
communication plots in the viewer.

For information about the structure
of returned data, see mpiprofile
info below.

-history
-nohistory

-historysize <size>

mpiprofile supports these options
in the same way as the standard
profile.

No other profile options are
supported by mpiprofile. These
three options have no effect on
the data displayed by mpiprofile
viewer.

mpiprofile off stops the parallel profiler. To reset the state of the
profiler and disable collecting communication information, you should

also call mpiprofile reset.

mpiprofile resume restarts the profiler without clearing previously
recorded function statistics. This works only in pmode or in the same

MATLAB worker session.

mpiprofile clear clears the profile information.

13-155

mpiprofile

13-156

mpiprofile status returns a valid status when it runs on the worker.

mpiprofile reset turns off the parallel profiler and resets the data
collection back to the standard profiler. If you do not call reset,
subsequent profile commands will collect MPI information.

mpiprofile info returns a profiling data structure with additional
fields to the one provided by the standard profile info in the
FunctionTable entry. All these fields are recorded on a per-function
and per-line basis, except for the *PerLab fields.

Field Description

BytesSent Records the quantity of data sent

BytesReceived Records the quantity of data received

TimeWasted Records communication waiting time

commTime Records the communication time

CommTimePerLab Vector of communication receive time for
each lab

TimeWastedPerLab Vector of communication waiting time for
each lab

BytesReceivedPerLab | Vector of data received from each lab

The three *PerLab fields are collected only on a per-function basis, and
can be turned off by typing the following command in pmode:

mpiprofile on -messagedetail simplified

mpiprofile viewer is used in pmode after running user code with
mpiprofile on. Calling the viewer stops the profiler and opens the
graphical profile browser with parallel options. The output is an HTML
report displayed in the profiler window. The file listing at the bottom
of the function profile page shows several columns to the left of each
line of code. In the summary page:

¢ Column 1 indicates the number of calls to that line.

mpiprofile

® Column 2 indicates total time spent on the line in seconds.

¢ Columns 3-6 contain the communication information specific to the
parallel profiler

mpiprofile('viewer', <profinfoarray>) in function form can be
used from the client. A structure <profinfoarray> needs be passed
in as the second argument, which is an array of mpiprofile info
structures. See pInfoVector in the Examples section below.

mpiprofile does not accept -timer clock options, because the
communication timer clock must be real.

For more information and examples on using the parallel profiler, see
“Using the Parallel Profiler” on page 6-31.

Examples In pmode, turn on the parallel profiler, run your function in parallel,
and call the viewer:

mpiprofile on;
% call your function;
mpiprofile viewer;

If you want to obtain the profiler information from a parallel job outside
of pmode (i.e., in the MATLAB client), you need to return output
arguments of mpiprofile info by using the functional form of the
command. Define your function foo (), and make it the task function
in a parallel job:

function [pInfo, yourResults] = foo

mpiprofile on

initData = (rand(100, codistributor())*rand(100, codistributor()));
pInfo = mpiprofile('info');

yourResults = gather(initData,1)

After the job runs and foo () is evaluated on your cluster, get the data
on the client:

A = getAllOutputArguments(yourdob);

13-157

mpiprofile

Then view parallel profile information:

pInfoVector = [A{:, 1}1;
mpiprofile('viewer', pInfoVector);

See Also profile MATLAB function reference page
mpiSettings, pmode

13-158

mpiSettings

Purpose

Syntax

Description

Remarks

Configure options for MPI communication

mpiSettings('DeadlockDetection', ‘on')

mpiSettings('MessageLogging', 'on')
mpiSettings('MessageLoggingDestination', 'CommandWindow')
mpiSettings('MessageLoggingDestination', 'stdout')
mpiSettings('MessageLoggingDestination', 'File','filename')

mpiSettings('DeadlockDetection', 'on') turns on deadlock detection
during calls to 1abSend and labReceive. If deadlock is detected, a call
to labReceive might cause an error. Although it is not necessary to
enable deadlock detection on all labs, this is the most useful option. The
default value is 'off' for parallel jobs, and 'on' inside pmode sessions
or spmd statements. Once the setting has been changed within a pmode
session or an spmd statement, the setting stays in effect until either the
pmode session ends or the MATLAB pool is closed.

mpiSettings('MessageLogging', 'on') turns on MPI message logging.
The defaultis 'off'. The default destination is the MATLAB Command
Window.

mpiSettings('MessageLoggingDestination', 'CommandWindow') sends
MPI logging information to the MATLAB Command Window. If

the task within a parallel job is set to capture Command Window
output, the MPI logging information will be present in the task’s
CommandWindowQutput property.

mpiSettings('MessageLoggingDestination', 'stdout') sends MPI
logging information to the standard output for the MATLAB process.
If you are using a job manager, this is the mdce service log file; if you
are using an mpiexec scheduler, this is the mpiexec debug log, which
you can read with getDebugLog.

mpiSettings('MessageLoggingDestination', 'File','filename')
sends MPI logging information to the specified file.

Setting the MessagelLoggingDestination does not automatically enable
message logging. A separate call is required to enable message logging.

13-159

mpiSettings

Examples

13-160

mpiSettings has to be called on the lab, not the client. That is, it
should be called within the task function, within jobStartup.m, or
within taskStartup.m.

Set deadlock detection for a parallel job inside the jobStartup.m file
for that job:

% Inside jobStartup.m for the parallel job

mpiSettings('DeadlockDetection', 'on');

myLogFname = sprintf('%s_%d.log', tempname, labindex);
mpiSettings('MessagelLoggingDestination', 'File', myLogFname);
mpiSettings('MessagelLogging', 'on');

Turn off deadlock detection for all subsequent spmd statements that use
the same MATLAB pool:

spmd; mpiSettings('DeadlockDetection', 'off'); end

numlabs

Purpose Total number of labs operating in parallel on current job
Syntax n = numlabs
Description n = numlabs returns the total number of labs currently operating on

the current job. This value is the maximum value that can be used with
labSend and labReceive.

See Also labindex, labReceive, labSend

13-161

parfor

Purpose

Syntax

Description

13-162

Execute code loop in parallel

parfor loopvar = initval:endval, statements, end
parfor (loopvar = initval:endval, M), statements, end

parfor loopvar = initval:endval, statements, end allows you to
write a loops for a statement or block of code that executes in parallel
on a cluster of workers, which are identified and reserved with the
matlabpool command. initval and endval must evaluate to finite
integer values, or the range must evaluate to a value that can be
obtained by such an expression, that is, an ascending row vector of
consecutive integers.

The following table lists some ranges that are not valid.

Invalid parfor Range Reason Range Not Valid

parfor i = 1:2:25 1, 3, 5,... are not consecutive.

parfor i = -7.5:7.5 -7.5, -6.5,... are not integers.

A=[37-264-493 The resulting range, 1, 2, 4,...,

71; has nonconsecutive integers.

parfor i = find(A>0)

parfor i = [5;6;7;8] [5;6;7;8] is a column vector, not a
row vector.

You can enter a parfor-loop on multiple lines, but if you put more
than one segment of the loop statement on the same line, separate the
segments with commas or semicolons:

parfor i = range; <loop body>; end

parfor (loopvar = initval:endval, M), statements, end uses
M to specify the maximum number of MATLAB workers that will
evaluate statements in the body of the parfor-loop. M must be a
nonnegative integer. By default, MATLAB uses as many workers as it
finds available. If you specify an upper limit, MATLAB employs no

parfor

Examples

more than that number, even if additional workers are available. If
you request more resources than are available, MATLAB uses the
maximum number available at the time of the call.

If the parfor-loop cannot run on workers in a MATLAB pool (for
example, if no workers are available or M i1s 0), MATLAB executes the
loop on the client in a serial manner. In this situation, the parfor
semantics are preserved in that the loop iterations can execute in any
order.

Note Because of independence of iteration order, execution of parfor
does not guarantee deterministic results.

The maximum amount of data that can be transferred in a single
chunk between client and workers in the execution of a parfor-loop
is determined by the JVM memory allocation limit. For details, see
“Object Data Size Limitations” on page 6-42.

For a detailed description of parfor-loops, see Chapter 2, “Parallel
for-Loops (parfor)”.

Suppose that f is a time-consuming function to compute, and that you
want to compute its value on each element of array A and place the
corresponding results in array B:

parfor i = 1:1length(A)
B(1) = f(A(1));
end

Because the loop iteration occurs in parallel, this evaluation can
complete much faster than it would in an analogous for-loop.

Next assume that A, B, and C are variables and that f, g, and h are
functions:

parfor i = 1:n
t = f(A(1));

13-163

parfor

u = g(B(i));
C(i) = h(t, u);
end

If the time to compute f, g, and h is large, parfor will be significantly
faster than the corresponding for statement, even if n is relatively
small. Although the form of this statement is similar to a for statement,
the behavior can be significantly different. Notably, the assignments
to the variables i, t, and u do not affect variables with the same name
in the context of the parfor statement. The rationale is that the body
of the parfor is executed in parallel for all values of i, and there is
no deterministic way to say what the “final” values of these variables
are. Thus, parfor is defined to leave these variables unaffected in the
context of the parfor statement. By contrast, the variable C has a
different element set for each value of i, and these assignments do
affect the variable C in the context of the parfor statement.

Another important use of parfor has the following form:

s = 0;
parfor i = 1:n
if p(1i) % assume p is a function
s =s + 1;
end
end

The key point of this example is that the conditional adding of 1 to

s can be done in any order. After the parfor statement has finished
executing, the value of s depends only on the number of iterations for
which p (i) is true. Aslong as p(i) depends only upon i, the value of
s is deterministic. This technique generalizes to functions other than
plus (+).

Note that the variable s does refer to the variable in the context of the
parfor statement. The general rule is that the only variables in the
context of a parfor statement that can be affected by it are those like s
(combined by a suitable function like +) or those like C in the previous
example (set by indexed assignment).

13-164

parfor

See Also for, matlabpool, pmode, numlabs

13-165

pause

Purpose

Syntax
Arguments

Description

See Also

13-166

Pause job manager queue

pause(jm)

jm Job manager object whose queue is paused.

pause(jm) pauses the job manager’s queue so that jobs waiting in the
queued state will not run. Jobs that are already running also pause,

after completion of tasks that are already running. No further jobs or
tasks will run until the resume function is called for the job manager.

The pause function does nothing if the job manager is already paused.

resume, waitForState

pctconfig

Purpose

Syntax

Arguments

Description

Configure settings for Parallel Computing Toolbox client session

pctconfig('p7', vi, ...)
config = pctconfig('p7', vi1, ...)
config = pctconfig()

p1 Property to configure. Supported properties are
'portrange’, 'hostname’.
vi Value for corresponding property.
config Structure of configuration value.
pctconfig('p7', v1, ...) sets the client configuration property p7

with the value v1.

Note that the property value pairs can be in any format supported

by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are the property names and the field values specify the property
values.

If the property is 'portrange’, the specified value is used to set the
range of ports to be used by the client session of Parallel Computing
Toolbox software. This is useful in environments with a limited choice
of ports. The value of 'portrange' should either be a 2-element vector
[minport, maxport] specifying the range, or 0 to specify that the
client session should use ephemeral ports. By default, the client session
searches for available ports to communicate with the other sessions of
MATLAB Distributed Computing Server software.

If the property is 'hostname', the specified value is used to set the
hostname for the client session of Parallel Computing Toolbox software.
This is useful when the client computer is known by more than one
hostname. The value you should use is the hostname by which the
cluster nodes can contact the client computer. The toolbox supports
both short hostnames and fully qualified domain names.

13-167

pctconfig
|

config = pctconfig('p7', v1, ...) returns a structure to config.
The field names of the structure reflect the property names, while the
field values are set to the property values.

config = pctconfig(), without any input arguments, returns all the
current values as a structure to config. If you have not set any values,
these are the defaults.

Remarks The values set by this function do not persist between MATLAB
sessions. To guarantee its effect, call pctconfig before calling any
other Parallel Computing Toolbox functions.

Examples View the current settings for hostname and ports.
config = pctconfig()
config =

portrange: [27370 27470]
hostname: 'machine32'

Set the current client session port range to 21000-22000 with hostname
fdm4.

pctconfig('hostname', 'fdm4', 'portrange', [21000 22000]);

Set the client hostname to a fully qualified domain name.

pctconfig('hostname', 'desktop24.subnet6.companydomain.com');

13-168

pciRunOnAll

Purpose
Syntax

Description

Examples

See Also

Run command on client and all workers in matlabpool
pctRunOnAll command

pctRunOnAll command runs the specified command on all the workers

of the matlabpool as well as the client, and prints any command-line
output back to the client Command Window. The specified command
runs in the base workspace of the workers and does not have any return
variables. This is useful if there are setup changes that need to be
performed on all the labs and the client.

Note If you use pctRunOnAll to run a command such as addpath in a
mixed-platform environment, it can generate a warning on the client
while executing properly on the labs. For example, if your labs are all
running on Linux operating systems and your client is running on

a Microsoft Windows operating system, an addpath argument with
Linux-based paths will warn on the Windows-based client.

Clear all loaded functions on all labs:

pctRunOnAll clear functions

Change the directory on all workers to the project directory:

pctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the labs:

pctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})

matlabpool

13-169

pload

Purpose

Syntax
Arguments

Description

Examples

13-170

Load file into parallel session

pload(fileroot)

fileroot Part of filename common to all saved files being loaded.

pload(fileroot) loads the data from the files named [fileroot
num2str(labindex)] into the labs running a parallel job. The files
should have been created by the psave command. The number of
labs should be the same as the number of files. The files should be
accessible to all the labs. Any codistributed arrays are reconstructed
by this function. If fileroot contains an extension, the character
representation of the labindex will be inserted before the extension.
Thus, pload('abc') attempts to load the file abc1.mat on lab 1,
abc2.mat on lab 2, and so on.

Create three variables — one replicated, one variant, and one
codistributed. Then save the data.

clear all;

rep = speye(numlabs);

var = magic(labindex);

D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

pload

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isa(D, 'codistributed')
See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, psave

13-171

pmode

Purpose

Syntax

Description

13-172

Interactive Parallel Command Window

pmode start

pmode start numlabs

pmode start conf numlabs

pmode quit

pmode exit

pmode client2lab clientvar labs labvar
pmode lab2client labvar lab clientvar
pmode cleanup conf

pmode allows the interactive parallel execution of MATLAB commands.
pmode achieves this by defining and submitting a parallel job, and
opening a Parallel Command Window connected to the labs running the
job. The labs then receive commands entered in the Parallel Command
Window, process them, and send the command output back to the
Parallel Command Window. Variables can be transferred between the
MATLAB client and the labs.

pmode start starts pmode, using the default configuration to

define the scheduler and number of labs. (The initial default
configuration is local; you can change it by using the function
defaultParallelConfig.) You can also specify the number of labs
using pmode start numlabs, but note that the local scheduler allows
for only up to eight labs.

pmode start conf numlabs starts pmode using the Parallel Computing
Toolbox configuration conf to locate the scheduler, submits a parallel
job with the number of labs identified by numlabs, and connects the
Parallel Command Window with the labs. If the number of labs is
specified, it overrides the minimum and maximum number of workers
specified in the configuration.

pmode quit or pmode exit stops the parallel job, destroys it, and closes
the Parallel Command Window. You can enter this command at the
MATLAB prompt or the pmode prompt.

pmode client2lab clientvar labs labvar copies the variable
clientvar from the MATLAB client to the variable labvar on the labs

pmode

Examples

identified by labs. If labvar is omitted, the copy is named clientvar.
labs can be either a single lab index or a vector of lab indices. You can
enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client labvar lab clientvar copies the variable labvar
from the lab identified by lab, to the variable clientvar on the
MATLAB client. If clientvar is omitted, the copy is named labvar.
You can enter this command at the MATLAB prompt or the pmode
prompt. Note: If you use this command in an attempt to transfer a
codistributed array to the client, you get a warning, and only the local
portion of the array on the specified lab is transferred. To transfer an
entire codistributed array, first use the gather function to assemble the
whole array into the labs’ workspaces.

pmode cleanup conf destroys all parallel jobs created by pmode for the
current user running under the scheduler specified in the configuration
conf, including jobs that are currently running. The configuration is
optional; the default configuration is used if none is specified. You can
enter this command at the MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the
following are equivalent.

pmode start conf 4
pmode('start', 'conf', 4)

In the following examples, the pmode prompt (P>>) indicates commands
entered in the Parallel Command Window. Other commands are
entered in the MATLAB Command Window.

Start pmode using the default configuration to identify the scheduler
and number of labs.

pmode start

Start pmode using the local configuration with four local labs.

pmode start local 4

13-173

pmode

Start pmode using the configuration myconfig and eight labs on the
cluster.

pmode start myconfig 8

Execute a command on all labs.

P>> x = 2*labindex;

Copy the variable x from lab 7 to the MATLAB client.

pmode lab2client x 7

Copy the variable y from the MATLAB client to labs 1 to 8.

pmode client2lab y 1:8

Display the current working directory of each lab.

P>> pwd

See Also createParalleldob, defaultParallelConfig, findResource

13-174

promote

Purpose

Syntax

Arguments

Description

Remarks

Examples

Promote job in job manager queue

promote(jm, job)

jm The job manager object that contains the job.
job Job object promoted in the queue.

promote(jm, job) promotes the job object job, that is queued in the
job manager jm.

If job is not the first job in the queue, promote exchanges the position
of job and the previous job.

After a call to promote or demote, there is no change in the order of
job objects contained in the Jobs property of the job manager object.
To see the scheduled order of execution for jobs in the queue, use the
findJob function in the form [pending queued running finished]
= finddJob(jm).

Create and submit multiple jobs to the scheduler identified by the
default parallel configuration:

j1 = createdob('name','dob A');
j2 createdob('name', 'dob B');
i3 createdob('name', 'dob C');
submit(j1);submit(j2);submit(j3);

Assuming that the default parallel configuration uses a job manager,
create an object for that job manager, and promote Job C by one
position in its queue:

jm = findResource();
promote(jm, j3)

Examine the new queue sequence:

13-175

promote

[pjobs, gjobs, rjobs, fjobs] = finddob(jm);
get(gjobs, 'Name')

‘dob A'
'dob C'
‘dJob B'

See Also createdob, demote, findJob, submit

13-176

psave

Purpose

Syntax
Arguments

Description

Examples

Save data from parallel job session

psave(fileroot)

fileroot Part of filename common to all saved files.

psave(fileroot) saves the data from the labs’ workspace into the
files named [fileroot num2str(labindex)]. The files can be loaded
by using the pload command with the same fileroot, which should
point to a directory accessible to all the labs. If fileroot contains an
extension, the character representation of the labindex is inserted
before the extension. Thus, psave('abc') creates the files 'abc1.mat’,
‘abc2.mat', etc., one for each lab.

Create three variables — one replicated, one variant, and one
codistributed. Then save the data.

clear all;

rep = speye(numlabs);

var = magic(labindex);

D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos

13-177

psave

Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
isa(D, 'codistributed')
See Also load, save MATLAB function reference pages

labindex, numlabs, pmode, pload

13-178

redistribute

Purpose
Syntax

Description

Examples

See Also

Redistribute codistributed array with another distribution scheme

D2 = redistribute (D1, codist)

D2 redistribute (D1, codist) redistributes a codistributed array
D1 and returns D2 using the distribution scheme defined by the
codistributor object codist.

Redistribute an array according to the distribution scheme of another
array.

spmd

% First, create a magic square distributed by columns:
M = codistributed(magic(10), codistributorid(2, [1 2 3 4]));

% Create a pascal matrix distributed by rows (first dimension):
P = codistributed(pascal(10), codistributorid(1));

o°

Redistribute the pascal matrix according to the

o°

distribution (partition) scheme of the magic square:
R = redistribute(P, getCodistributor(M));
end

codistributed, codistributor, codistributorid.defaultPartition

13-179

resume

Purpose

Syntax
Arguments

Description

See Also

13-180

Resume processing queue in job manager

resume(jm)

jm Job manager object whose queue is resumed.

resume(jm) resumes processing of the job manager’s queue so that
jobs waiting in the queued state will be run. This call will do nothing
if the job manager is not paused.

pause, waitForState

set

Purpose

Syntax

Arguments

Description

Configure or display object properties

set(obj)

props = set(obj)

set(obj, 'PropertyName')

props = set(obj, 'PropertyName')

set(obj, 'PropertyName' ,PropertyValue,...)
set(obj,PN,PV)

set(obj,S)

set(obj, 'configuration', 'ConfigurationName',...)

obj An object or an array of objects.

'"PropertyName' A property name for obj.

PropertyValue A property value supported by
PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the
property names for obj.

S A structure with property names and
property values.

'configuration' Literal string to indicate usage of a
configuration.

‘ConfigurationName' Name of the configuration to use.

set(obj) displays all configurable properties for obj. If a property has
a finite list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible

13-181

set

Remarks

13-182

property values. If a property does not have a finite set of possible
values, its cell array is empty.

set(obj, 'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj, 'PropertyName' ,PropertyValue,...) configures one or
more property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n, where m is equal to the number of objects in
obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. Sis a structure whose field names are object properties, and whose
field values are the values for the corresponding properties.

set(obj, 'configuration', 'ConfigurationName',...) sets

the object properties with values specified in the configuration
ConfigurationName. For details about defining and applying
configurations, see “Programming with User Configurations” on page
6-16.

You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set. Additionally, you
can specify a property name without regard to case, and you can make
use of property name completion. For example, if j1 is a job object, the
following commands are all valid and have the same result:

set(j1, 'Timeout',20)
set(j1, 'timeout',20)
set(j1, 'timeo',20)

set

Examples This example illustrates some of the ways you can use set to configure
property values for the job object j1.

set(j1, 'Name', ‘'dob_PT109', 'Timeout',60);
props1 = {'Name' 'Timeout'};

values1 = {'Job_PT109' 60};
set(j1, props1, valuest);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get, inspect

13-183

setJobSchedulerData

Purpose

Syntax

Arguments

Description

See Also

13-184

Set specific user data for job on generic scheduler

setdJobSchedulerData(sched, job, userdata)

sched Scheduler object identifying the generic third-party
scheduler running the job.

job Job object identifying the job for which to store data.

userdata Information to store for this job.

setJobSchedulerData(sched, job, userdata) stores data for the job
job that is running under the generic scheduler sched. You can later
retrieve the information with the function getJobSchedulerData. For
example, it might be useful to store the third-party scheduler’s external
ID for this job, so that the function specified in GetJobStateFcn can
later query the scheduler about the state of the job. Or the stored data
might be an array with the scheduler’s ID for each task in the job.

You should call the function setdJobSchedulerData in the
submit function (identified by the SubmitFcn property) and call
getJobSchedulerData in any of the functions identified by the
properties GetJobStateFcn, DestroyJobFcn, DestroyTaskFcn,
CanceldobFcn, or CancelTaskFcn.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

getdobSchedulerData

setupForParallelExecution

Purpose

Syntax

Arguments

Description

Set options for submitting parallel jobs to scheduler

setupForParallelExecution(sched, 'pc')
setupForParallelExecution(sched, 'pcNoDelegate')
setupForParallelExecution(sched, 'unix')

sched Platform LSF, PBS Pro, or TORQUE
scheduler object.

"pc’, Setting for parallel execution.

‘pcNoDelegate’,

"unix'

setupForParallelExecution(sched, 'pc') sets up the scheduler

to expect workers running on Microsoft Windows operating systems,
and selects the wrapper script which expects to be able to call
"mpiexec -delegate" on the workers. Note that you still need to supply
SubmitArguments that ensure that the LSF or PBS Pro scheduler runs
your job only on PC-based workers. For example, for LSF, including ' -R
type==NTX86' in your SubmitArguments causes the scheduler to select
only workers on 32-bit Windows operating systems.

setupForParallelExecution(sched, 'pcNoDelegate') is similar to
the 'pc' mode, except that the wrapper script does not attempt to call
"mpiexec -delegate", and so assumes that you have installed some
other means of achieving authentication without passwords.

setupForParallelExecution(sched, 'unix') sets up the scheduler
to expect workers running on UNIX operating systems, and selects

the default wrapper script for UNIX-based workers. You still need to
supply SubmitArguments to ensure that the LSF, PBS Pro, or TORQUE
scheduler runs your job only on UNIX-based workers. For example, for
LSF, including '-R type==LINUX64' in your SubmitArguments causes
the scheduler to select only 64-bit Linux-based workers.

This function sets the values for the properties
ParallelSubmissionWrapperScript and Cluster0OsType.

13-185

setupForParallelExecution

Examples

See Also

13-186

From any client, set up the scheduler to run parallel jobs only on
Windows-based (PC) workers.

1sf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'pc');
set(1sf_sched, 'SubmitArguments', '-R type==NTX86');

From any client, set up the scheduler to run parallel jobs only on
UNIX-based workers.

1sf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'unix');
set(1sf_sched, 'SubmitArguments', '-R type==LINUX64');

createParalleldob, findResource

size

Purpose

Syntax

Arguments

Description

See Also

Size of object array

d = size(obj)

[myn] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

mi1,m2,m3,...,mn The lengths of the first n dimensions of obj.

d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size (obj,1) returns the number of rows.

length

13-187

sparse

Purpose Create sparse distributed or codistributed matrix

Syntax SD = sparse(FD)
SC = sparse(m, n, codist)
SC = sparse(m, n, codist, 'noCommunication')

Description SD = sparse(FD) converts a full distributed or codistributed array FD
to a sparse distributed or codistributed (respectively) array SD.

SC = sparse(m, n, codist) creates an m-by-n sparse codistributed
array of underlying class double, distributed according to the scheme
defined by the codistributor codist. For information on constructing
codistributor objects, see the reference pages for codistributorid and
codistributor2dbc. This form of the syntax is most useful inside spmd,
pmode, or a parallel job.

SC = sparse(m, n, codist, 'noCommunication') creates an m-by-n
sparse codistributed array in the manner specified above, but does not
perform any global communication for error checking when constructing
the array. This form of the syntax is most useful inside spmd, pmode,
or a parallel job.

Note To create a sparse codistributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

spmd
SC = logical(sparse(m, n, codistributorid()));
end
Examples With four labs,
spmd (4)
D = sparse(1000, 1000, codistributorid())
end

13-188

sparse

See Also

creates a 1000-by-1000 codistributed sparse double array D. D is
distributed by its second dimension (columns), and each lab contains a
1000-by-250 local piece of D.

spmd (4)
codist = codistributorid(2, 1:numlabs)
D = sparse(10, 10, codist);

end

creates a 10-by-10 codistributed sparse double array D, distributed by
its columns. Each lab contains a 10-by-labindex local piece of D.

Convert a distributed array into a sparse distributed array:

R = distributed.rand(1000);
D floor(2*R); % D also is distributed
SD = sparse(D); % SD is sparse distributed

sparse MATLAB function reference page

distributed.spalloc, codistributed.spalloc

13-189

spmd

Purpose

Syntax

Description

13-190

Execute code in parallel on MATLAB pool

spmd, statements, end
spmd(n), statements, end
spmd(m, n), statements, end

The general form of an spmd (single program, multiple data) statement
is:

spmd
statements
end

spmd, statements, end defines an spmd statement on a single line.
MATLAB executes the spmd body denoted by statements on several
MATLAB workers simultaneously. The spmd statement can be used
only if you have Parallel Computing Toolbox. To execute the statements
in parallel, you must first open a pool of MATLAB workers using
matlabpool.

Inside the body of the spmd statement, each MATLAB worker has a
unique value of labindex, while numlabs denotes the total number of
workers executing the block in parallel. Within the body of the spmd
statement, communication functions for parallel jobs (such as 1abSend
and labReceive) can transfer data between the workers.

Values returning from the body of an spmd statement are converted to
Composite objects on the MATLAB client. A Composite object contains
references to the values stored on the remote MATLAB workers, and
those values can be retrieved using cell-array indexing. The actual
data on the workers remains available on the workers for subsequent
spmd execution, so long as the Composite exists on the client and the
MATLAB pool remains open.

By default, MATLAB uses as many workers as it finds available in the
pool. When there are no MATLAB workers available, MATLAB executes
the block body locally and creates Composite objects as necessary.

spmd

Remarks

Examples

See Also

spmd(n), statements, end uses n to specify the exact number of
MATLAB workers to evaluate statements, provided that n workers
are available from the MATLAB pool. If there are not enough workers
available, an error is thrown. If n is zero, MATLAB executes the block
body locally and creates Composite objects, the same as if there is no
pool available.

spmd(m, n), statements, end uses a minimum of m and a maximum
of n workers to evaluate statements. If there are not enough workers

available, an error is thrown. m can be zero, which allows the block to

run locally if no workers are available.

For more information about spmd and Composite objects, see Chapter 3,
“Single Program Multiple Data (spmd)”.

For information about restrictions and limitations when using spmd, see
“Limitations” on page 3-15.

Perform a simple calculation in parallel, and plot the results:

matlabpool(3)
spmd
% build magic squares in parallel
g = magic(labindex + 2);
end
for ii=1:length(q)
% plot each magic square
figure, imagesc(q{ii});
end
matlabpool close

batch, Composite, labindex, matlabpool, numlabs, parfor

13-191

submit

Purpose

Syntax
Arguments

Description

Remarks

Examples

See Also

13-192

Queue job in scheduler

submit (obj)

obj Job object to be queued.

submit(obj) queues the job object, obj, in the scheduler queue. The
scheduler used for this job was determined when the job was created.

When a job contained in a scheduler is submitted, the job’s State
property is set to queued, and the job is added to the list of jobs waiting
to be executed.

The jobs in the waiting list are executed in a first in, first out manner;
that is, the order in which they were submitted, except when the
sequence is altered by promote, demote, cancel, or destroy.

Find the job manager named jobmanageri using the lookup service
on host JobMgrHost.

jm1 = findResource('scheduler', 'type','jobmanager',
‘name', 'jobmanager1', 'LookupURL"', 'JobMgrHost');

Create a job object.

j1 = createdob(jmi);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

createdob, findJob

subsasgn

Purpose

Syntax

Description

See Also

Subscripted assignment for Composite

C(i) = {B}

C(1:end) = {B}

C([it1, i2]) = {B1, B2}
C{i} = B

subsasgn assigns remote values to Composite objects. The values reside
on the labs in the current MATLAB pool.

C(i) = {B} sets the entry of C on lab i to the value B.

C(1:end) = {B} sets all entries of C to the value B.

C([i1, i2]) = {B1, B2} assigns different values on labs i1 and i2.
C{i} = B sets the entry of C on lab i to the value B.

subsasgn MATLAB function reference page

Composite, subsref

13-193

subsref

Purpose

Syntax

Description

See Also

13-194

Subscripted reference for Composite

B = C(i)

B = C([il, i2, ...])

B = C{i}

[B1, B2, ...] = C{[i1, i2, ...1}

subsref retrieves remote values of a Composite object from the labs in
the current MATLAB pool.

B = C(i) returns the entry of Composite C from lab i as a cell array.

B = C([i1, i2, ...]) returns multiple entries as a cell array.
B = C{i} returns the value of Composite C from lab i as a single entry.
[B1, B2, ...] = C{[i1, i2, ...]1} returns multiple entries.

subsref MATLAB function reference page

Composite, subsasgn

taskFinish

Purpose M-file for user-defined options to run when task finishes
Syntax taskFinish(task)
Arguments task The task being evaluated by the worker.

Description taskFinish(task) runs automatically on a worker each time the
worker finishes evaluating a task for a particular job. You do not call
this function from the client session, nor explicitly as part of a task
function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskFinish.m

You add M-code to the file to define task finalization actions to be
performed on the worker every time it finishes evaluating a task for
this job.

Alternatively, you can create a file called taskFinish.m and include it
as part of the job’s FileDependencies property. The version of the file
in FileDependencies takes precedence over the version in the worker’s
MATLAB installation.

For further detail, see the text in the installed taskFinish.m file.

See Also Functions
jobStartup, taskStartup

Properties

FileDependencies

13-195

taskStartup

Purpose

Syntax
Arguments

Description

See Also

13-196

M-file for user-defined options to run when task starts

taskStartup(task)

task The task being evaluated by the worker.

taskStartup(task) runs automatically on a worker each time the
worker evaluates a task for a particular job. You do not call this
function from the client session, nor explicitly as part of a task function.

The function M-file resides in the worker’s MATLAB installation at

matlabroot/toolbox/distcomp/user/taskStartup.m
You add M-code to the file to define task initialization actions to be
performed on the worker every time it evaluates a task for this job.

Alternatively, you can create a file called taskStartup.m and include
it as part of the job’s FileDependencies property. The version of the
file in FileDependencies takes precedence over the version in the
worker’s MATLAB installation.

For further detail, see the text in the installed taskStartup.m file.

Functions

jobStartup, taskFinish

Properties

FileDependencies

wait

Purpose

Syntax

Arguments

Description

Examples

Wait for job to finish or change state

wait(obj)
wait(obj, 'state')
wait(obj, 'state', timeout)

obj Job object whose change in state to wait for.
'state' Value of the job object’s State property to wait for.
timeout Maximum time to wait, in seconds.

wait (obj) blocks execution in the client session until the job identified
by the object obj reaches the 'finished' state or fails. This occurs
when all the job’s tasks are finished processing on remote workers.

wait (obj, 'state') blocks execution in the client session until the
specified job object changes state to the value of 'state'. The valid
states to wait for are 'queued', 'running', and 'finished'.

If the object is currently or has already been in the specified state,

a wait is not performed and execution returns immediately. For
example, if you execute wait(job, 'queued') for a job already in the
'finished' state, the call returns immediately.

wait(obj, 'state', timeout) blocks execution until either the job
reaches the specified 'state’, or timeout seconds elapse, whichever
happens first.

Note Simulink models cannot run while a MATLAB session is blocked
by wait. If you must run Simulink from the MATLAB client while also
running distributed or parallel jobs, you cannot use wait.

Submit a job to the queue, and wait for it to finish running before
retrieving its results.

13-197

wait

submit(job);
wait(job, 'finished')
results = getAllOutputArguments(job)

Submit a batch job and wait for it to finish before retrieving its variables.

job = batch('myScript');
wait(job)
load(job)

See Also pause, resume, waitForState

13-198

waitForState

Purpose

Syntax

Arguments

Description

Wait for object to change state

waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)

OK = waitForState(..., timeout)
obj Job or task object whose change in state to wait for.
'state' Value of the object’s State property to wait for.
timeout Maximum time to wait, in seconds.
0K Boolean true if wait succeeds, false if times out.

waitForState(obj) blocks execution in the client session until the
job or task identified by the object obj reaches the 'finished' state
or fails. For a job object, this occurs when all its tasks are finished
processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session
until the specified object changes state to the value of 'state'. For a
job object, the valid states to wait for are 'queued', 'running', and
'finished'. For a task object, the valid states are 'running' and
‘finished'.

If the object is currently or has already been in the specified state, a
wait is not performed and execution returns immediately. For example,
if you execute waitForState(job, 'queued') for job already in the
'finished' state, the call returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either
the object reaches the specified 'state', or timeout seconds elapse,
whichever happens first.

OK = waitForState(..., timeout) returns a value of true to OK if
the awaited state occurs, or false if the wait times out.

13-199

waitForState

Note Simulink models cannot run while a MATLAB session is blocked
by waitForState. If you must run Simulink from the MATLAB

client while also running distributed or parallel jobs, you cannot use
waitForState.

Examples Submit a job to the queue, and wait for it to finish running before
retrieving its results.

submit (job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

See Also pause, resume, wait

13-200

Property Reference

Job Manager Properties (p. 14-2)
Scheduler Properties (p. 14-3)
Job Properties (p. 14-5)

Task Properties (p. 14-6)
Worker Properties (p. 14-8)

Control job manager objects
Control scheduler objects
Control job objects

Control task objects

Control worker objects

14 Property Reference

14-2

Job Manager Properties

BusyWorkers

ClusterOsType

ClusterSize

Configuration

HostAddress

HostName

IdleWorkers

Jobs

Name

NumberOfBusyWorkers

NumberOfIdleWorkers

State

Type
UserData

Workers currently running tasks

Specify operating system of nodes on
which scheduler will start workers

Number of workers available to
scheduler

Specify configuration to apply to
object or toolbox function

IP address of host running job
manager or worker session

Name of host running job manager
or worker session

Idle workers available to run tasks

Jobs contained in job manager
service or in scheduler’s data
location

Name of job manager, job, or worker
object

Number of workers currently
running tasks

Number of idle workers available to
run tasks

Current state of task, job, job
manager, or worker

Type of scheduler object

Specify data to associate with object

Scheduler Properties

Scheduler Properties

CancelJobFcn Specify function to run when
canceling job on generic scheduler

CancelTaskFcn Specify function to run when
canceling task on generic scheduler

ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of Platform LSF cluster

ClusterOsType Specify operating system of nodes on
which scheduler will start workers

ClusterSize Number of workers available to
scheduler

ClusterVersion Version of HPC Server scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data is
stored

DestroyJobFcn Specify function to run when
destroying job on generic scheduler

DestroyTaskFcn Specify function to run when
destroying task on generic scheduler

EnvironmentSetMethod Specify means of setting
environment variables for mpiexec
scheduler

GetJobStateFcn Specify function to run when
querying job state on generic
scheduler

HasSharedFilesystem Specify whether nodes share data
location

JobDescriptionFile Name of XML job description file
for Microsoft Windows HPC Server
scheduler

14-3

14 Property Reference

14-4

Jobs

JobTemplate

MasterName

MatlabCommandToRun

MpiexecFileName

ParallelSubmission-

WrapperScript
ParallelSubmitFcn

RcpCommand

ResourceTemplate

RshCommand

SchedulerHostname

ServerName

SubmitArguments

SubmitFcn

Type
UserData

Jobs contained in job manager
service or in scheduler’s data
location

Name of job template for HPC Server
2008 scheduler

Name of Platform LSF master node

MATLAB command that generic
scheduler runs to start lab

Specify pathname of executable
mpiexec command

Script that scheduler runs to start
labs

Specify function to run when parallel
job submitted to generic scheduler

Command to copy files from client

Resource definition for PBS Pro or
TORQUE scheduler

Remote execution command used on
worker nodes during parallel job

Name of host running Microsoft
Windows HPC Server scheduler

Name of current PBS Pro or
TORQUE server machine

Specify additional arguments to use
when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec
scheduler

Specify function to run when job
submitted to generic scheduler

Type of scheduler object

Specify data to associate with object

Job Properties

UseSOAJobSubmission Allow service-oriented architecture
(SOA) submission on HPC Server
2008 cluster

WorkerMachineOsType Specify operating system of nodes on
which mpiexec scheduler will start
labs

Job Properties

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker can
access

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all workers

for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of workers
to perform job tasks

Name Name of job manager, job, or worker
object

Parent Parent object of job or task

PathDependencies Specify directories to add to

MATLAB worker path

14-5

14 Property Reference

QueuedFcn

RestartWorker
RunningFcn

StartTime
State

SubmitArguments

SubmitTime

Tag
Task

Tasks

Timeout

UserData

UserName

Task Properties

AttemptedNumberOfRetries

CaptureCommandWindowOutput

14-6

Specify M-file function to execute
when job is submitted to job manager
queue

Specify whether to restart MATLAB
workers before evaluating job tasks

Specify M-file function to execute
when job or task starts running

When job or task started

Current state of task, job, job
manager, or worker

Specify additional arguments to use
when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec
scheduler

When job was submitted to queue

Specify label to associate with job
object

First task contained in MATLAB
pool job object

Tasks contained in job object

Specify time limit to complete task
or job

Specify data to associate with object

User who created job

Number of times failed task was
rerun

Specify whether to return Command
Window output

Task Properties

CommandWindowOutput

Configuration

CreateTime
Error
ErrorIdentifier
ErrorMessage

FailedAttemptInformation

FinishedFcn

FinishTime

Function

ID
InputArguments

MaximumNumberOfRetries

NumberOfOutputArguments

OQutputArguments
Parent

RunningFcn

StartTime
State

Timeout

Text produced by execution of task
object’s function

Specify configuration to apply to
object or toolbox function

When task or job was created
Task error information

Task error identifier
Message from task error

Information returned from failed
task

Specify callback to execute after task
or job runs

When task or job finished

Function called when evaluating
task

Object identifier
Input arguments to task object

Specify maximum number of times
to rerun failed task

Number of arguments returned by
task function

Data returned from execution of task
Parent object of job or task

Specify M-file function to execute
when job or task starts running

When job or task started

Current state of task, job, job
manager, or worker

Specify time limit to complete task
or job

14-7

14 Property Reference

14-8

UserData

Worker

Worker Properties

Computer
CurrentJob
CurrentTask
HostAddress
HostName
JobManager
Name
PreviousdJob

PreviousTask
State

Specify data to associate with object

Worker session that performed task

Information about computer on
which worker is running

Job whose task this worker session
is currently evaluating

Task that worker is currently
running

IP address of host running job
manager or worker session

Name of host running job manager
or worker session

Job manager that this worker is
registered with

Name of job manager, job, or worker
object

Job whose task this worker
previously ran

Task that this worker previously ran

Current state of task, job, job
manager, or worker

Properties — Alphabetical
List

AttemptedNumberOfRetries

15-2

Purpose Number of times failed task was rerun

Description If a task reruns because of certain system failures, the task property
AttemptedNumberOfRetries stores a count of the number of attempted
reruns.

Note The AttemptedNumberOfRetries property is available only when
using the MathWorks job manager as your scheduler.

Characteristics ygage Task object
Read-only Always
Data type Double
See Also Properties

FailedAttemptInformation, MaximumNumberOfRetries

BlockSize

Purpose

Description

Characteristics

See Also

Block size of codistributor2dbc object

blksz = dist.BlockSize returns the block size of codistributor2dbc
object dist. The default value is 64. You can read this property only by
using dot-notation; not the get function.

For more information on 2dbc distribution and the block size of
distributed arrays, see “2-Dimensional Distribution” on page 5-17.

Usage codistributor2dbc object
Read-only Always
Data type Double

Functions

codistributor2dbc

Properties

LabGrid, Orientation

15-3

BusyWorkers

15-4

Purpose Workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics Usage Job manager object
Read-only Always
Data type Array of worker objects
Values As workers complete tasks and assume new ones, the lists of workers

in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as
a busy or idle worker does not get updated until the job manager runs
the next job and tries to send a task to that worker.

Examples Examine the workers currently running tasks for a particular job
manager.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties

ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

CancelJobFcn

Purpose

Description

Characteristics

Values

See Also

Specify function to run when canceling job on generic scheduler

CanceldobFcn specifies a function to run when you call cancel for a job
running on a generic scheduler. This function lets you communicate
with the scheduler, to provide any instructions beyond the normal
toolbox action of changing the state of the job. To identify the job for the
scheduler, the function should include a call to getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

Usage Generic scheduler object
Read-only Never
Data type Function handle

You can set CancelJobFcn to any valid function handle.

Functions

cancel, getJdobSchedulerData, setJobSchedulerData

Properties

CancelTaskFcn, DestroydobFcn, DestroyTaskFcn

15-5

CancelTaskFcn

Purpose Specify function to run when canceling task on generic scheduler

Description CancelTaskFcn specifies a function to run when you call cancel
for a task running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of changing the state of the task. To identify
the task for the scheduler, the function should include a call to
getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle
Values You can set CancelTaskFcn to any valid function handle.
See Also Functions

cancel, getJdobSchedulerData, setJobSchedulerData

Properties

CanceldJobFcn, DestroyJobFcn, DestroyTaskFcn

15-6

CaptureCommandWindowOutput

Purpose Specify whether to return Command Window output

Description CaptureCommandWindowOutput specifies whether to return command
window output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of
the task object. If the value is set false (or logical 0), the task does not
retain command window output.

Characteristics ygage Task object
Read-only While task is running or finished
Data type Logical
Values The value of CaptureCommandWindowOutput can be set to true (or

logical 1) or false (or logical 0). When you perform get on the property,
the value returned is logical 1 or logical 0. The default value is logical
0 to save network bandwidth in situations where the output is not
needed; except for batch jobs, whose default is 1 (true).

Examples Set all tasks in a job to retain any command window output generated
during task evaluation.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});

alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)

15-7

CaptureCommandWindowOutput

See Also Properties

Function, CommandWindowOutput

15-8

ClusterMatlabRoot

Purpose

Description

Characteristics

Values

See Also

Specify MATLAB root for cluster

ClusterMatlabRoot specifies the pathname to MATLAB for the cluster
to use for starting MATLAB worker processes. The path must be
available from all nodes on which worker sessions will run. When
using the generic scheduler interface, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Usage Scheduler object
Read-only Never
Data type String

ClusterMatlabRoot is a string. It must be structured appropriately for
the file system of the cluster nodes. The directory must be accessible
as expressed in this string, from all cluster nodes on which MATLAB
workers will run. If the value is empty, the MATLAB executable must
be on the path of the worker.

Properties

Datalocation, MasterName, MatlabCommandToRun, PathDependencies

15-9

ClusterName

Purpose Name of Platform LSF cluster

Description ClusterName indicates the name of the LSF cluster on which this
scheduler will run your jobs.

Characteristics Usage LSF scheduler object
Read-only Always
Data type String

See Also Properties

Datalocation, MasterName, PathDependencies

15-10

ClusterOsType

Purpose

Description

Characteristics

Values

See Also

Specify operating system of nodes on which scheduler will start workers

Cluster0OsType specifies the operating system of the nodes on which a
scheduler will start workers, or whose workers are already registered
with a job manager.

Usage Scheduler object

Read-only For job manager or Microsoft Windows HPC
Server (or CCS) scheduler object

Data type String

The valid values for this property are 'pc', 'unix', and 'mixed'.

® For Windows HPC Server, the setting is always 'pc'.

e A value of 'mixed' is valid only for distributed jobs with Platform
LSF or generic schedulers; or for distributed or parallel jobs with a
job manager. Otherwise, the nodes of the labs running a parallel job
with LSF, Windows HPC Server, PBS Pro, TORQUE, mpiexec, or
generic scheduler must all be the same platform.

® For parallel jobs with an LSF, PBS Pro, or TORQUE scheduler,
this property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly.

Functions

createParallelJob, findResource, setupForParallelExecution

Properties

ClusterName, MasterName, SchedulerHostname

15-11

ClusterSize

Purpose Number of workers available to scheduler

Description ClusterSize indicates the number of workers available to the scheduler
for running your jobs.

Characteristics Usage Scheduler object
Read-only For job manager object
Data type Double
Values For job managers this property is read-only. The value for a job manager

represents the number of workers registered with that job manager.

For local or third-party schedulers, this property is settable,

and its value specifies the maximum number of workers or labs
that this scheduler can start for running a job. A parallel job’s
MaximumNumberOfWorkers property value must not exceed the value
of ClusterSize.

Remarks If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

15-12

ClusterVersion

Purpose Version of HPC Server scheduler

Description ClusterVersion specifies which version of MicrosoftWindows HPC
Server scheduler you submit your jobs to.

Characteristics Usage Windows HPC Server scheduler object
Read-only Never
Data type String

Values This property can have the value 'CCS' (for CCS) or 'HPCServer2008'

(for HPC Server 2008).

Remarks If you change the value of ClusterVersion, this resets the values of
ClusterSize, JobTemplate, and UseSOAJobSubmission.

See Also Properties
JobDescriptionFile, JobTemplate, UseSOAJobSubmission

15-13

codistributor2dbc.defauliBlockSize

Purpose

Description

Characteristics

See Also

15-14

Default block size for codistributor2dbc distribution scheme

dbs = codistributor2dbc.defaultBlockSize returns the default
block size for a codistributor2dbc distribution scheme. Currently

this returns the value 64. You can read this property only by using
dot-notation; not with the get function on the codistributor2dbc object.

Usage codistributor2dbc object
Read-only Always
Data type Double

Functions

codistributor2dbc, codistributor2dbc.defaultLabGrid

Properties
BlockSize, LabGrid

CommandWindowOutput

Purpose

Description

Characteristics

Values

Examples

Text produced by execution of task object’s function

CommandWindowOutput contains the text produced during the execution
of a task object’s Function property that would normally be printed to
the MATLAB Command Window.

For example, if the function specified in the Function property
makes calls to the disp command, the output that would normally be
printed to the Command Window on the worker is captured in the
CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified

using the CaptureCommandWindowOutput property. The
CaptureCommandWindowOutput property by default is logical 0 to save
network bandwidth in situations when the CommandWindowOutput is
not needed.

Usage Task object
Read-only Always
Data type String

Before a task is evaluated, the default value of CommandWindowOutput
1s an empty string.

Get the Command Window output from all tasks in a job.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});

alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowQutput', true)

15-15

CommandWindowOutput

submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties

Function, CaptureCommandWindowOutput

15-16

Computer

Purpose Information about computer on which worker is running

Description The Computer property of a worker is set to the string that would be
returned from running the computer function on that worker.

Characteristics ygage Worker object
Read-only Always
Data type String
Values Some possible values for the Computer property are GLNX86, MACI,

PCWIN, GLNXA64, PCWIN64, and SOL64. For more information about
specific values, see the computer function reference page.

See Also Functions
computer MATLAB function reference page

Properties

HostAddress, HostName, WorkerMachineOsType

15-17

Configuration

Purpose Specify configuration to apply to object or toolbox function

Description You use the Configuration property to apply a configuration to an
object. For details about writing and applying configurations, see
“Programming with User Configurations” on page 6-16.

Setting the Configuration property causes all the applicable properties
defined in the configuration to be set on the object.

Characteristics Usage Scheduler, job, or task object
Read-only Never
Data type String
Values The value of Configuration is a string that matches the name of

a configuration. If a configuration was never applied to the object,
or if any of the settable object properties have been changed since a
configuration was applied, the Configuration property is set to an
empty string.

Examples Use a configuration to find a scheduler.
jm = findResource('scheduler', 'configuration', 'myConfig')
Use a configuration when creating a job object.
job1 = createdob(jm, 'Configuration', 'jobmanager')
Apply a configuration to an existing job object.

job2 = createdob(jm)
set(job2, 'Configuration', '‘myjobconfig')

15-18

Configuration

See Also Functions

createdob, createParalleldob, createTask, dfeval, dfevalasync,
findResource

15-19

CreateTime

Purpose When task or job was created

Description CreateTime holds a date number specifying the time when a task or job
was created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Task object or job object
Read-only Always
Data type String
Values CreateTime is assigned the job manager’s system time when a task

or job is created.

Examples Create a job, then get its CreateTime.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm);
get(j, 'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions

createdob, createTask

Properties

FinishTime, StartTime, SubmitTime

15-20

CurrentlJob

Purpose Job whose task this worker session is currently evaluating

Description Currentdob indicates the job whose task the worker is evaluating at
the present time.

Characteristics ygage Worker object
Read-only Always
Data type Job object
Values Currentdob is an empty vector while the worker is not evaluating
a task.
See Also Properties

CurrentTask, PreviousdJob, PreviousTask, Worker

15-21

CurrentTask

Purpose Task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the
present time.

Characteristics ygage Worker object
Read-only Always
Data type Task object
Values CurrentTask is an empty vector while the worker is not evaluating
a task.
See Also Properties

Currentdob, PreviousdJob, PreviousTask, Worker

15-22

Datalocation

Purpose Specify directory where job data is stored
Description DatalLocation identifies where the job data is located.
Characteristics Usage Scheduler object
Read-only Never
Data type String or struct
Values DatalLocation is a string or structure specifying a pathname for the job

data. In a shared file system, the client, scheduler, and all worker nodes
must have access to this location. In a nonshared file system, only the
MATLAB client and scheduler access job data in this location.

If DatalLocation is not set, the default location for job data is the
current working directory of the MATLAB client the first time you use
findResource to create an object for this type of scheduler. All settable
property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the
object from the client workspace with delete or clear all.

Use a structure to specify the DataLocation in an environment of mixed
platforms. The fields for the structure are named pc and unix. Each
node then uses the field appropriate for its platform. See the examples
below. When you examine a DatalLocation property that was set by a
structure in this way, the value returned is the string appropriate for
the platform on which you are examining it.

Examples Set the DataLocation property for a UNIX-based cluster.

sch = findResource('scheduler', 'name','LSF")
set(sch, 'DatalLocation','/depot/jobdata')

15-23

Datalocation

See Also

15-24

Use a structure to set the DataLocation property for a mixed platform
cluster.

d = struct('pc', "\\ourdomain\depot\jobdata',
‘unix', '/depot/jobdata')
set(sch, 'DataLocation', d)

Properties

HasSharedFilesystem, PathDependencies

DestroyJobFcn

Purpose

Description

Characteristics

Values

See Also

Specify function to run when destroying job on generic scheduler

DestroyJobFcn specifies a function to run when you call destroy
for a job running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of deleting the job data from disk. To
identify the job for the scheduler, the function should include a call
to getdobSchedulerData.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

Usage Generic scheduler object
Read-only Never
Data type Function handle

You can set DestroyJobFcn to any valid function handle.

Functions

destroy, getdJobSchedulerData, setdJobSchedulerData

Properties

CanceldobFcn, CancelTaskFcn, DestroyTaskFcn

15-25

DestroyTaskFcn

Purpose

Description

Characteristics

Values

See Also

15-26

Specify function to run when destroying task on generic scheduler

DestroyTaskFcn specifies a function to run when you call destroy
for a task running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of deleting the task data from disk. To
identify the task for the scheduler, the function should include a call
to getdobSchedulerData.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

Usage Generic scheduler object
Read-only Never
Data type Function handle

You can set DestroyTaskFcn to any valid function handle.

Functions

destroy, getdJobSchedulerData, setdJobSchedulerData

Properties

CanceldobFcn, CancelTaskFcn, DestroydJobFcn

Dimension

Purpose

Description

Characteristics

See Also

Distributed dimension of codistributorld object

dim = dist.Dimension returns the distribution dimension of the
codistributor object dist. The default value is the last nonsingleton
dimension, indicated by a value of 0. You can read this property only by
using dot-notation; not the get function.

Usage
Read-only
Data type

Functions

codistributorid

Properties

Partition

codistributorld object
Always
Double

15-27

EnvironmeniSetMethod

Purpose

Description

Characteristics

Values

15-28

Specify means of setting environment variables for mpiexec scheduler

The mpiexec scheduler needs to supply environment variables to the
MATLAB processes (labs) that it launches. There are two means
by which it can do this, determined by the EnvironmentSetMethod

property.

Usage mpiexec scheduler object
Read-only Never
Data type String

A value of '-env' instructs the mpiexec scheduler to insert into the
mpiexec command line additional directives of the form -env VARNAME
value.

A value of 'setenv' instructs the mpiexec scheduler to set the
environment variables in the environment that launches mpiexec.

Error

Purpose

Description

Characteristics

Values

See Also

Task error information

If an error occurs during the task evaluation, Error contains the
MException object thrown. See the MException reference page for more
information about returned information.

Usage Task object
Read-only Always
Data type Structure

Error is empty before an attempt to run a task. Error remains empty if
the evaluation of a task object’s function does not produce an error or if
a task does not complete because of cancellation or worker crash.

Properties

ErrorIdentifier, ErrorMessage, Function

15-29

Errorldentifier

Purpose

Description

Characteristics

Values

See Also

15-30

Task error identifier

If an error occurs during the task evaluation, ErrorIdentifier contains
the identifier property of the MException thrown. ErrorIdentifier
can also indicate if the task did not complete because of cancellation

or worker crash.

Usage Task object
Read-only Always
Data type String

ErrorIdentifier is empty before an attempt to run a task, and remains
empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an identifier. If a task completes,
ErrorIdentifier has the same value as the identifier field of the
Error property. If a task does not complete because of cancellation or
a worker crash, ErrorIdentifier is set to indicate that fact, and the
Error property is left empty.

Properties

Error, ErrorMessage, Function

ErrorMessage

Purpose

Description

Characteristics

Values

Examples

See Also

Message from task error

If an error occurs during the task evaluation, ErrorMessage contains
the message property of the MException thrown. ErrorMessage can
also indicate if the task did not complete because of cancellation or
worker crash.

Usage Task object
Read-only Always
Data type String

ErrorMessage is empty before an attempt to run a task, and remains
empty if the evaluation of a task object’s function does not produce an
error or if the error did not provide an message. If a task completes,
ErrorMessage has the same value as the message field of the Error
property. If a task does not complete because of cancellation or a worker
crash, ErrorMessage is set to indicate that fact, and the Error property
is left empty.

Retrieve the error message from a task object.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j createdob(jm);
a [1 2 3 4]; %Note: matrix not square
t = createTask(j, @inv, 1, {a});

submit(j)
get(t, 'ErrorMessage’)
ans =

Error using ==> inv
Matrix must be square.

Properties

Error, ErrorIdentifier, Function

15-31

FailedAttemptinformation

Purpose

Description

Characteristics

Values

See Also

15-32

Information returned from failed task

If a task reruns because of certain system failures, the task property
FailedAttemptInformation stores information related to the failure
and rerun attempts.

Note The FailedAttemptInformation property is available only when
using the MathWorks job manager as your scheduler.

Usage Task object
Read-only Always
Data type Array of objects

The data type of FailedAttemptInformation is an array of objects, one
object for each rerun of the task. The property values of each resulting
object contain information about when the task was rerun and the error
that caused it.

Properties

AttemptedNumberOfRetries, MaximumNumberOfRetries

FileDependencies

Purpose Directories and files that worker can access

Description FileDependencies contains a list of directories and files that the
worker will need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the
value for the property as a cell array of strings. Each string is an
absolute or relative pathname to a directory or file. The toolbox makes
a zip file of all the files and directories referenced in the property, and
stores it on the job manager machine. (Note: If the files or directories
change while they are being zipped, this can result in a failure or error.)

The first time a worker evaluates a task for a particular job, the job
manager passes to the worker the zip file of the files and directories in
the FileDependencies property. On the worker, the file is unzipped,
and a directory structure is created that is exactly the same as that
accessed on the client machine where the property was set. Those
entries listed in the property value are added to the top of the path in
the MATLAB worker session. (The subdirectories of the entries are
not added to the path, even though they are included in the directory
structure.)

When the worker runs subsequent tasks for the same job, it uses the
directory structure already set up by the job’s FileDependencies
property for the first task it ran for that job.

When you specify FileDependencies at the time of creating a job,
the settings are combined with those specified in the applicable
configuration, if any. (Setting FileDependencies on a job object after
it is created does not combine the new setting with the configuration
settings, but overwrites existing settings for that job.)

Read-only After job is submitted
Data type Cell array of strings

15-33

FileDependencies

Values

Remarks

Examples

See Also

15-34

The value of FileDependencies is empty by default. If a pathname that
does not exist is specified for the property value, an error is generated.

The is a default limitation on the size of data transfers via the
FileDependencies property. For more information on this limit, see
“Object Data Size Limitations” on page 6-42. For alternative means of
making data available to workers, see “Sharing Code” on page 8-26.

Make available to a job’s workers the contents of the directories fd1
and fd2, and the file fdfile1.m.

set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfilei.m'})
get(job1,'FileDependencies’)

ans =
"fd1'
'fd2'
'fdfilet1.m'
Functions

getFileDependencyDir, jobStartup, taskFinish, taskStartup

Properties

PathDependencies

FinishedFcn

Purpose Specify callback to execute after task or job runs

Description FinishedFcn specifies the M-file function to execute when a job or task
completes its execution.

The callback executes in the local MATLAB session, that is, the session
that sets the property, the MATLAB client.

Note The FinishedFcn property is available only when using the
MathWorks job manager as your scheduler.

Characteristics Usage Task object or job object
Read-only Never
Data type Callback
Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for Handle Graphics®,
passing to the callback function the object (job or task) that makes the
call and an empty argument of event data.

Examples Create a job and set its FinishedFcn property using a function handle
to an anonymous function that sends information to the display.

jm = findResource('scheduler', 'type', 'jobmanager’',
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm, 'Name', 'Job_52a');

set(j, 'FinishedFcn',
@(job,eventdata) disp([job.Name ' ' job.State]));

Create a task whose FinishFcn is a function handle to a separate
function.

15-35

FinishedFcn

See Also

15-36

createTask(j, @rand, 1, {2,4},
'FinishedFcn', @clientTaskCompleted);

Create the function clientTaskCompleted.m on the path of the
MATLAB client.

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Run the job and note the output messages from the job and task
FinishedFcn callbacks.

submit (j)
Finished task: 1
Job_52a finished

Properties

QueuedFcn, RunningFcn

FinishTime

Purpose

Description

Characteristics ygage

Values

Examples

When task or job finished

FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'

If a task or job is stopped or is aborted due to an error condition,
FinishTime will hold the time when the task or job was stopped or
aborted.

Task object or job object
Read-only Always

Data type String

FinishTime is assigned the job manager’s system time when the task
or job has finished.

Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm);

t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)

waitForState(j, 'finished')
get(j, ' 'StartTime')

ans =

Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime"')

ans =

Mon Jun 21 10:02:52 EDT 2004

15-37

FinishTime

See Also Functions

cancel, submit

Properties

CreateTime, StartTime, SubmitTime

15-38

Function

Purpose Function called when evaluating task

Description Function indicates the function performed in the evaluation of a task.
You set the function when you create the task using createTask.

Characteristics Usage Task object
Read-only While task is running or finished
Data type String or function handle
See Also Functions
createTask
Properties

InputArguments, NumberOfOutputArguments, OutputArguments

15-39

GetJobStateFcn

Purpose

Description

Characteristics

Values

See Also

15-40

Specify function to run when querying job state on generic scheduler

GetJobStateFcn specifies a function to run when you call get,
waitForState, or any other function that queries the state of a job
running on a generic scheduler. This function lets you communicate
with the scheduler, to provide any instructions beyond the normal
toolbox action of retrieving the job state from disk. To identify

the job for the scheduler, the function should include a call to
getJobSchedulerData.

The value returned from the function must be a valid State for a job,
and replaces the value ordinarily returned from the original call to
get, etc. This might be useful when the scheduler has more up-to-date
information about the state of a job than what is stored by the toolbox.
For example, the scheduler might be aware of a failure before the
toolbox is aware.

For more information and examples on using these functions and
properties, see “Managing Jobs” on page 8-46.

Usage Generic scheduler object
Read-only Never
Data type Function handle

You can set GetJobStateFcn to any valid function handle.

Functions

get, getdobSchedulerData, setJobSchedulerData

Properties
State, SubmitFcn

HasSharedFilesystem

Purpose

Description

Characteristics

Values

See Also

Specify whether nodes share data location

HasSharedFilesystem determines whether the job data stored in
the location identified by the DataLocation property can be accessed
from all nodes in the cluster. If HasSharedFilesystemis false (0),
the scheduler handles data transfers to and from the worker nodes.
If HasSharedFilesystem is true (1), the workers access the job data
directly.

Usage Scheduler object
Read-only For Windows HPC Server scheduler object
Data type Logical

The value of HasSharedFilesystem can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value
returned is logical 1 or logical 0.

Properties

Datalocation, FileDependencies, PathDependencies

15-41

HostAddress

Purpose

Description

Characteristics

Examples

See Also

15-42

IP address of host running job manager or worker session

HostAddress indicates the numerical IP address of the computer
running the job manager or worker session to which the job manager
object or worker object refers. You can match the HostAddress property
to find a desired job manager or worker when creating an object with
findResource.

Usage Job manager object or worker object
Read-only Always
Data type Cell array of strings

Create a job manager object and examine its HostAddress property.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
get(jm, 'HostAddress')
ans =
123.123.123.1283
Functions

findResource

Properties

Computer, HostName, WorkerMachineOsType

HostName

Purpose

Description

Characteristics

Examples

See Also

Name of host running job manager or worker session

You can match the HostName property to find a desired job manager
or worker when creating the job manager or worker object with
findResource.

Usage Job manager object or worker object
Read-only Always
Data type String

Create a job manager object and examine its HostName property.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘Name', 'MyJobManager')
get(jm, 'HostName')
ans =
JobMgrHost
Functions

findResource

Properties

Computer, HostAddress, WorkerMachineOsType

15-43

ID

Purpose

Description

Characteristics

Values

Examples

15-44

Object identifier

Each object has a unique identifier within its parent object. The ID
value is assigned at the time of object creation. You can use the ID
property value to distinguish one object from another, such as different
tasks in the same job.

Usage Job object or task object
Read-only Always
Data type Double

The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are
assigned ID values in numerical sequence as they are created after that.

Examine the ID property of different objects.

jm = findResource('scheduler', 'type','jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', ‘dJobMgrHost');

j = createdob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =

[1]

[2]

The ID values are the only unique properties distinguishing these two
tasks.

ID

See Also Functions

createdob, createTask

Properties

Jobs, Tasks

15-45

IdleWorkers

Purpose Idle workers available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics Usage Job manager object
Read-only Always
Data type Array of worker objects
Values As workers complete tasks and assume new ones, the lists of workers

in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as
a busy or idle worker does not get updated until the job manager runs
the next job and tries to send a task to that worker.

Examples Examine which workers are available to a job manager for immediate
use to perform tasks.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, ClusterSize, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers

15-46

InputArguments

Purpose

Description

Characteristics

Values

Examples

See Also

Input arguments to task object

InputArguments is a 1-by-N cell array in which each element is an
expected input argument to the task function. You specify the input
arguments when you create a task with the createTask function.

Usage Task object
Read-only While task is running or finished
Data type Cell array

The forms and values of the input arguments are totally dependent
on the task function.

Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
createdob(jm);

j

t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =
[2] [4]
Functions
createTask
Properties

Function, OutputArguments

15-47

JobData

Purpose

Description

Characteristics

Values

Examples

See Also

15-48

Data made available to all workers for job’s tasks

The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it does not have to be passed
to the worker for each task in a job that the worker evaluates. Passing
the data only once per job to each worker is more efficient than passing
data with each task.

Note, that to access the data contained in a job’s JobData property,
the worker session evaluating the task needs to have access to the job,
which it gets from a call to the function getCurrentdJob, as discussed in
the example below.

Usage Job object
Read-only After job is submitted
Data type Any type

JobData is an empty vector by default.

Create job1 and set its JobData property value to the contents of
arrayi.

job1 = createdob(jm)
set(job1, 'JobData', array1l)
createTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 will be available to all the tasks in the job.
Because the job itself must be accessible to the tasks, myfunction must
include a call to the function getCurrentJdob. That is, the task function
myfunction needs to call getCurrentdJob to get the job object through
which it can get the JobData property.

Functions

createdob, createTask

JobDescriptionFile

Purpose

Description

Characteristics

See Also

Name of XML job description file for Microsoft Windows HPC Server
scheduler

The XML file specified by the JobDescriptionFile property defines
the base state from which the job is created.

Any job properties that are specified as part of MATLAB job objects
(e.g., MinimumNumberOfWorkers, MaximumNumberOfWorkers, etc., for
parallel or MATLAB pool jobs) override the values specified in the job
description file. Scheduler properties (e.g., nonempty JobTemplate
property) also override the values specified in job description file.

For SOA jobs the values in the job description file are ignored.

For version 2 of Windows HPC Server 2008, the values for HPC Server
job properties specified in the job description file must be compatible
with the values in the job template that is applied to the job (either the
default job template or the job template specified by the JobTemplate
property). Incompatibilities between property values specified by the
job description file and the job template might result in an error when
you submit a job. For example, if the job template imposes property
restrictions that you violate in your job description file, you get an error.

For information about job description files, consult Microsoft online
documentation at:

http://technet.microsoft.com/en-us/library/cc972801(WS.10).aspx

Usage Windows HPC Server scheduler object
Read-only Never
Data type String

Properties

ClusterVersion, JobTemplate, UseSOAJobSubmission

15-49

http://technet.microsoft.com/en-us/library/cc972801%28WS.10%29.aspx

JobManager

Purpose Job manager that this worker is registered with

Description JobManager indicates the job manager that the worker that the worker
is registered with.

Characteristics ygage Worker object

Read-only Always

Data type Job manager object
Values The value of JobManager is always a single job manager object.
See Also Properties

BusyWorkers, IdleWorkers

15-50

Jobs

Purpose Jobs contained in job manager service or in scheduler’s data location

Description The Jobs property contains an array of all the job objects in a scheduler.
Job objects will be in the order indicated by their ID property, consistent
with the sequence in which they were created, regardless of their
State. (To see the jobs categorized by state or the scheduled execution
sequence for jobs in the queue, use the findJob function.)

Characteristics Usage Job manager or scheduler object
Read-only Always
Data type Array of job objects
Examples Examine the Jobs property for a job manager, and use the resulting

array of objects to set property values.

jm findResource('scheduler','type','jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j1 = createdob(jm);
j2 = createdob(jm);
j3 = createdob(jm);
j4 = createdob(jm)

b

all jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value
to 10 for each of the job objects in the array all jobs.

15-51

Jobs

See Also Functions

createdob, destroy, findJdob, submit

Properties

Tasks

15-52

JobTemplate

Purpose

Description

Characteristics

Values

Remarks

See Also

Name of job template for HPC Server 2008 scheduler

JobTemplate identifies the name of a job template to use with your HPC
Server scheduler. The property value is not case-sensitive.

With HPC Server 2008, if you do not specify a value for the JobTemplate
property, the scheduler uses the default job template to run the job. Ask
your system administrator which job template you should use.

For SOA jobs, the specified job template used for submitting SOA jobs
must not impose any restrictions on the name of the job, otherwise
these jobs fail.

Usage Windows HPC Server scheduler object
Read-only Never
Data type String

JobTemplate is an empty string by default. Job templates apply only
for HPC Server 2008 clusters, and your scheduler ClusterVersion
property must be set to 'HPCServer2008'. If ClusterVersion is set to
any other value, and you attempt to set JobTemplate to a nonempty
string, an error is generated and the property value remains as a
nonempty string.

If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission.

Properties

ClusterVersion, JobDescriptionFile, UseSOAJobSubmission

15-53

LabGrid

Purpose

Description

Characteristics

See Also

15-54

Lab grid of codistributor2dbc object

lbgrd = dist.LabGrid returns the lab grid associated with a
codistributor2dbc object dist. The lab grid is the row vector of length
2, [nprow, npcol], used by the ScaLAPACK library to represent the
nprow-by-npcol layout of the labs for array distribution. nprow times
npcol must equal numlabs.

For more information on 2dbc distribution and lab grids of distributed
arrays, see “2-Dimensional Distribution” on page 5-17.

Usage codistributor2dbc object

Read-only Always

Data type Array of doubles
Functions

codistributor2dbc, numlabs

Properties

BlockSize, Orientation

MasterName

Purpose Name of Platform LSF master node
Description MasterName indicates the name of the LSF cluster master node.
Characteristics Usage LSF scheduler object

Read-only Always

Data type String
Values MasterName is a string of the full name of the master node.
See Also Properties

ClusterName

15-55

MatlabCommandToRun

Purpose

Description

Characteristics

Values

See Also

15-56

MATLAB command that generic scheduler runs to start lab

MatlabCommandToRun indicates the command that the scheduler uses
to start a MATLAB worker on a cluster node for a task evaluation.
To ensure that the correct MATLAB runs, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Usage Generic scheduler object
Read-only Always
Data type String

MatlabCommandToRun is set by the toolbox when the scheduler object
is created.

Properties
ClusterMatlabRoot, SubmitFcn

MaximumNumberOfRetries

Purpose Specify maximum number of times to rerun failed task

Description If a task cannot complete because of certain system failures, the job
manager can attempt to rerun the task. MaximumNumberOfRetries
specifies how many times to try to run the task after such failures. The
task reruns until it succeeds or until it reaches the specified maximum
number of attempts.

Note The MaximumNumberOfRetries property is available only when
using the MathWorks job manager as your scheduler.

Characteristics ygage Task object

Read-only Never

Data type Double
Values The default value for MaximumNumberOfRetries is 1.
See Also Properties

AttemptedNumberOfRetries, FailedAttemptInformation

15-57

MaximumNumberOfWorkers

Purpose

Description

Characteristics

Values

Examples

See Also

15-58

Specify maximum number of workers to perform job tasks

With MaximumNumberOfWorkers you specify the greatest number of
workers to be used to perform the evaluation of the job’s tasks at any one
time. Tasks may be distributed to different workers at different times
during execution of the job, so that more than MaximumNumberOfWorkers
might be used for the whole job, but this property limits the portion of
the cluster used for the job at any one time.

Usage Job object
Read-only After job is submitted
Data type Double

You can set the value to anything equal to or greater than the value of
the MinimumNumberOfWorkers property.

Set the maximum number of workers to perform a job.

jm = findResource('scheduler', 'type','jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', ‘dJobMgrHost');
j = createdob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless
of how many tasks are in the job and how many workers are available
on the cluster.

Properties

BusyWorkers, ClusterSize, IdleWorkers, MinimumNumberOfWorkers
NumberOfBusyWorkers, NumberOfIdleWorkers

MinimumNumberOfWorkers

Purpose

Description

Characteristics

Values

Examples

See Also

Specify minimum number of workers to perform job tasks

With MinimumNumberOfWorkers you specify the minimum number
of workers to perform the evaluation of the job’s tasks. When the
job is queued, it will not run until at least this many workers are
simultaneously available.

If MinimumNumberOfWorkers workers are available to the job manager,
but some of the task dispatches fail due to network or node failures,
such that the number of tasks actually dispatched is less than
MinimumNumberOfWorkers, the job will be canceled.

Usage Job object
Read-only After job is submitted
Data type Double

The default value is 1. You can set the value anywhere from 1 up to or
equal to the value of the MaximumNumberOfWorkers property.

Set the minimum number of workers to perform a job.

jm = findResource('scheduler', 'type', 'jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks
until at least six workers are available to perform task evaluations.

Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers
NumberOfBusyWorkers, NumberOfIdleWorkers

15-59

MpiexecFileName

Purpose

Description

Characteristics

Remarks

See Also

15-60

Specify pathname of executable mpiexec command

MpiexecFileName specifies which mpiexec command is executed to
run your jobs.

Usage mpiexec scheduler object
Read-only Never
Data type String

See your network administrator to find out which mpiexec you should
run. The default value of the property points the mpiexec included in
your MATLAB installation.

Functions

mpiLibConf, mpiSettings

Properties

SubmitArguments

Name

Purpose

Description

Characteristics

Values

Examples

Name of job manager, job, or worker object

The descriptive name of a job manager or worker is set when its
service is started, as described in "Customizing Engine Services" in the
MATLAB Distributed Computing Server System Administrator’s Guide.
This is reflected in the Name property of the object that represents the
service. You can use the name of the job manager or worker service

to search for the particular service when creating an object with the
findResource function.

You can configure Name as a descriptive name for a job object at any
time before the job is submitted to the queue.

Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object; after
job object is submitted

Data type String

By default, a job object is constructed with a Name created by
concatenating the Name of the job manager with _job.

Construct a job manager object by searching for the name of the service
you want to use.

jm = findResource('scheduler', 'type', 'jobmanager',
"Name ', 'MyJobManager');

Construct a job and note its default Name.

j = createdob(jm);

get(j, 'Name')

ans =
MyJobManager_job

15-61

Name

Change the job’s Name property and verify the new setting.

set(j, 'Name', 'Mydob')
get(j, 'Name')
ans =
Mydob
See Also Functions

findResource, createdob

15-62

NumberOfBusyWorkers

Purpose

Description

Characteristics

Values

Examples

See Also

Number of workers currently running tasks

The NumberOfBusyWorkers property value indicates how many workers
are currently running tasks for the job manager.

Usage Job manager object
Read-only Always
Data type Double

The value of NumberOfBusyWorkers can range from O up to the total
number of workers registered with the job manager.

Examine the number of workers currently running tasks for a job
manager.

jm = findResource('scheduler', 'type','jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost"');
get(jm, 'NumberOfBusyWorkers')
Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers
MinimumNumberOfWorkers, NumberOfIdleWorkers

15-63

NumberOfidleWorkers

Purpose

Description

Characteristics

Values

Examples

See Also

15-64

Number of idle workers available to run tasks

The NumberOfIdleWorkers property value indicates how many workers
are currently available to the job manager for the performance of job
tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job
can start running.

Usage Job manager object
Read-only Always
Data type Double

The value of NumberOfIdleWorkers can range from O up to the total
number of workers registered with the job manager.

Examine the number of workers available to a job manager.

jm = findResource('scheduler', 'type','jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', ‘dJobMgrHost');
get(jm, 'NumberOfIdleWorkers')

Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers
MinimumNumberOfWorkers, NumberOfBusyWorkers

NumberOfOutputArguments
|

Purpose Number of arguments returned by task function

Description When you create a task with the createTask function, you define how
many output arguments are expected from the task function.

Characteristics ygage Task object
Read-only While task is running or finished
Data type Double
Values A matrix is considered one argument.
Examples Create a task and examine its NumberOfOutputArguments property.

jm = findResource('scheduler', 'type', 'jobmanager’',
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'NumberOfOutputArguments')
ans =
1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as
the argument immediately after the task function definition; in this
case, the 1 following the @rand argument.

See Also Functions

createTask

Properties

OutputArguments

15-65

Orientation

Purpose

Description

Characteristics

See Also

15-66

Orientation of codistributor2dbc object

DIST.Orientation returns the orientation associated with the LabGrid
of the codistributor2dbc object DIST. This orientation refers to how the
labs are organized within the lab grid. Currently, the only supported
orientation value is 'row'. You can read this property only by using
dot-notation; not the get function.

For more information on 2dbc distribution of arrays, see “2-Dimensional
Distribution” on page 5-17.

Usage codistributor2dbc object
Read-only Always
Data type String

Functions

codistributor2dbc

Properties

BlockSize, LabGrid

OutputArguments

Purpose

Description

Characteristics

Values

Examples

Data returned from execution of task

OutputArguments is a 1-by-N cell array in which each element
corresponds to each output argument requested from task evaluation.
If the task’s NumberOfOutputArguments property value is 0, or if the
evaluation of the task produced an error, the cell array is empty.

Usage Task object
Read-only Always
Data type Cell array

The forms and values of the output arguments are totally dependent
on the task function.

Create a job with a task and examine its result after running the job.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j createdob(jm);
t createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.
result = get(t, 'OutputArguments')
Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments’)

Because each task returns a cell array, allresults is a cell array of
cell arrays.

15-67

OutputArguments

See Also Functions
createTask, getAllOutputArguments

Properties

Function, InputArguments, NumberOfOutputArguments

15-68

ParallelSubmissionWrapperScript

Purpose

Description

Characteristics

Values

See Also

Script that scheduler runs to start labs

ParallelSubmissionWrapperScript identifies the script for the LSF,
PBS Pro, or TORQUE scheduler to run when starting labs for a parallel
job.

Usage LSF, PBS Pro, or TORQUE scheduler object
Read-only Never
Data type String

ParallelSubmissionWrapperScript is a string specifying the full path
to the script. This property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly. The property value then points to the appropriate wrapper
script in matlabroot/toolbox/distcomp/bin/util.

Functions

createParallelJdob, setupForParallelExecution, submit

Properties

ClusterName, ClusterMatlabRoot, MasterName, SubmitArguments

15-69

ParallelSubmitFcn

Purpose Specify function to run when parallel job submitted to generic scheduler

Description ParallelSubmitFcn identifies the function to run when you submit a
parallel job to the generic scheduler. The function runs in the MATLAB
client. This user-defined parallel submit function provides certain job
and task data for the MATLAB worker, and identifies a corresponding
decode function for the MATLAB worker to run.

For more information, see “MATLAB Client Submit Function” on page

8-32.
Characteristics Usage Generic scheduler object
Read-only Never
Data type String
Values ParallelSubmitFcn can be set to any valid MATLAB callback value

that uses the user-defined parallel submit function.

For more information about parallel submit functions and where to
find example templates you can use, see “Using the Generic Scheduler
Interface” on page 9-8.

See Also Functions

createParalleldob, submit

Properties
MatlabCommandToRun, SubmitFcn

15-70

Parent

Purpose Parent object of job or task

Description A job’s Parent property indicates the job manager or scheduler object
that contains the job. A task’s Parent property indicates the job object
that contains the task.

Characteristics Usage Job object or task object
Read-only Always
Data type Job manager, scheduler, or job object
See Also Properties
Jobs, Tasks

15-71

Partition

Purpose

Description

Characteristics

Examples

See Also

15-72

Partition scheme of codistributorld object

par = dist.Partition returns the partition scheme of the
codistributorld object dist, describing how the object would distribute
an array among the labs. You can read this property only by using
dot-notation; not the get function.

Usage codistributorld object
Read-only Always
Data type Array of doubles

dist = codistributorid(2, [3 3 2 2])
dist.Partition

returns [3 3 2 2] .

Functions

codistributorid

Properties

Dimension

PathDependencies

Purpose

Description

Characteristics

Values

Remarks

Examples

Specify directories to add to MATLAB worker path

PathDependencies identifies directories to be added to the top of the
path of MATLAB worker sessions for this job. If FileDependencies
are also used, FileDependencies are above PathDependencies on the
worker’s path.

When you specify PathDependencies at the time of creating a job,
the settings are combined with those specified in the applicable
configuration, if any. (Setting PathDependencies on a job object after
it is created does not combine the new setting with the configuration
settings, but overwrites existing settings for that job.)

Usage Scheduler job object
Read-only Never
Data type Cell array of strings

PathDependencies is empty by default. For a mixed-platform
environment, the strings can specify both UNIX-based and Microsoft
Windows-based paths; those not appropriate or not found for a
particular node generate warnings and are ignored.

For alternative means of making data available to workers, see
“Sharing Code” on page 8-26.

Set the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository (/central/funcs) and the
department archive (/dept1/funcs).

sch = findResource('scheduler', 'name','LSF")

job1 = createdob(sch)

p = {'/central/funcs','/dept1/funcs',
"\\OurDomain\central\funcs', '\\OurDomain\dept1\funcs'}

set(job1, 'PathDependencies', p)

15-73

PathDependencies

See Also Properties

ClusterMatlabRoot, FileDependencies

15-74

PreviousJob

Purpose Job whose task this worker previously ran
Description PreviousdJob indicates the job whose task the worker most recently
evaluated.
Characteristics ygage Worker object
Read-only Always
Data type Job object
Values PreviousdJob is an empty vector until the worker finishes evaluating

its first task.

See Also Properties

Currentdob, CurrentTask, PreviousTask, Worker

15-75

PreviousTask

Purpose Task that this worker previously ran
Description PreviousTask indicates the task that the worker most recently
evaluated.
Characteristics ygage Worker object
Read-only Always
Data type Task object
Values PreviousTask is an empty vector until the worker finishes evaluating

its first task.

See Also Properties

Currentdob, CurrentTask, PreviousdJob, Worker

15-76

QueuvedFcn

Purpose Specify M-file function to execute when job is submitted to job manager
queue
Description QueuedFcn specifies the M-file function to execute when a job is

submitted to a job manager queue.

The callback executes in the local MATLAB session, that is, the session
that sets the property.

Note The QueuedFcn property is available only when using the
MathWorks job manager as your scheduler.

Characteristics ygage Job object

Read-only Never

Data type Callback
Values QueuedFcn can be set to any valid MATLAB callback value.
Examples Create a job and set its QueuedFcn property, using a function handle to

an anonymous function that sends information to the display.

jm = findResource('scheduler', 'type','jobmanager', ...
‘name', 'MyJobManager', 'LookupURL', 'JobMgrHost"');
j = createdob(jm, 'Name', 'Job_52a');
set(j, 'QueuedFcn', ...
@(job,eventdata) disp([job.Name ' now queued for execution.']))

submit (j)
JOb_523 now queued for execution.

15-77

QueuedFcn

See Also Functions

submit

Properties

FinishedFcn, RunningFcn

15-78

RcpCommand

Purpose Command to copy files from client

Description When using a nonshared file system, the command specified by this
property’s value is used on the cluster to copy files from the client
machine. The syntax of the command must be compatible with standard
rcp. On MicrosoftWindows operating systems, the cluster machines
must have a suitable installation of rcp.

Characteristics Usage PBS Pro or TORQUE scheduler object
Read-only Never
Data type String

15-79

ResourceTemplate

Purpose

Description

Characteristics

Values

15-80

Resource definition for PBS Pro or TORQUE scheduler

The value of this property is used to build the resource selection portion
of the qsub command, generally identified by the -1 flag. The toolbox
uses this to identify the number of tasks in a parallel job, and you might
want to fill out other selection subclauses (such as the OS type of the
workers). You should specify a value for this property that includes the
literal string "N~ , which the toolbox will replace with the number of
workers in the parallel job prior to submission.

Usage PBS Pro or TORQUE scheduler object
Read-only Never
Data type String

You might set the property value as follows, to accommodate your
cluster size and to set the “wall time” limit of the job (i.e., how long it is
allowed to run in real time) to one hour:

e '.1 select="N",walltime=1:00:00"' (for a PBS Pro scheduler)
e '-1 nodes="N",walltime=1:00:00"' (for a TORQUE scheduler)

RestartWorker

Purpose

Description

Characteristics

Values

Examples

See Also

Specify whether to restart MATLAB workers before evaluating job tasks

In some cases, you might want to restart MATLAB on the workers
before they evaluate any tasks in a job. This action resets defaults,
clears the workspace, frees available memory, and so on.

Usage Job object
Read-only After job is submitted
Data type Logical

Set RestartWorker to true (or logical 1) if you want the job to restart
the MATLAB session on any workers before they evaluate their first
task for that job. The workers are not reset between tasks of the same
job. Set RestartWorker to false (or logical 0) if you do not want
MATLAB restarted on any workers. When you perform get on the
property, the value returned is logical 1 or logical 0. The default value
1s 0, which does not restart the workers.

Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('scheduler', 'type', 'jobmanager’,

‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm);
set(j, 'RestartWorker', true)

submit(j)

Functions

submit

15-81

RshCommand

Purpose

Description

Characteristics

15-82

Remote execution command used on worker nodes during parallel job

Used on only UNIX operating systems, the value of this property is the
command used at the beginning of running parallel jobs, typically to
start MPI daemon processes on the nodes allocated to run MATLAB
workers. The remote execution must be able to proceed without user
interaction, for example, without prompting for user credentials.

Usage PBS Pro or TORQUE scheduler object
Read-only Never
Data type String

RunningFcn

Purpose Specify M-file function to execute when job or task starts running

Description RunningFcn specifies the M-file function to execute when a job or task
begins its execution.

The callback executes in the local MATLAB client session, that is, the
session that sets the property.

Note The RunningFcn property is available only when using the
MathWorks job manager as your scheduler.

Characteristics Usage Task object or job object

Read-only Never

Data type Callback
Values RunningFcn can be set to any valid MATLAB callback value.
Examples Create a job and set its QueuedFcn property, using a function handle to

an anonymous function that sends information to the display.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn',
@(job,eventdata) disp([job.Name ' now running.']))

submit(j)
Job_52a now running.

15-83

RunningFcn

See Also Functions

submit

Properties

FinishedFcn, QueuedFcn

15-84

SchedulerHostname

Purpose

Description

Characteristics

Values

Remarks

See Also

Name of host running Microsoft Windows HPC Server scheduler

SchedulerHostname indicates the name of the node on which the
Windows HPC Server (or CCS) scheduler is running.

Usage Windows HPC Server scheduler object
Read-only Never
Data type String

SchedulerHostname is a string of the full name of the scheduler node.

If you change the value of SchedulerHostname, this resets the values of
ClusterSize, JobTemplate, and UseSOAJobSubmission.

Properties

ClusterOsType

15-85

ServerName

Purpose Name of current PBS Pro or TORQUE server machine

Description ServerName indicates the name of the node on which the PBS Pro or
TORQUE scheduler is running.

Characteristics ygage PBS Pro or TORQUE scheduler object
Read-only Always
Data type String
See Also Properties
ClusterOsType

15-86

StariTime

Purpose When job or task started

Description StartTime holds a date number specifying the time when a job or task
starts running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object or task object
Read-only Always
Data type String
Values StartTime is assigned the job manager’s system time when the task

or job has started running.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler', 'type', 'jobmanager',
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm);

t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)

waitForState(j, 'finished')
get(j, 'StartTime')

ans =

Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')

ans =

Mon Jun 21 10:02:52 EDT 2004

15-87

StariTime

See Also Functions

submit

Properties

CreateTime, FinishTime, SubmitTime

15-88

State

Purpose

Description

Characteristics

Values

Current state of task, job, job manager, or worker

The State property reflects the stage of an object in its life cycle,
indicating primarily whether or not it has yet been executed. The
possible State values for all Parallel Computing Toolbox objects are
discussed below in the “Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be
part of a job that is running if other tasks in the job have not finished.

Usage Task, job, job manager, or worker object
Read-only Always
Data type String

Task Obiject

For a task object, possible values for State are

® pending — Tasks that have not yet started to evaluate the task
object’s Function property are in the pending state.

® running — Task objects that are currently in the process of
evaluating the Function property are in the running state.

e finished — Task objects that have finished evaluating the task
object’s Function property are in the finished state.

¢ unavailable — Communication cannot be established with the job
manager.

15-89

State

15-90

Job Object

For a job object, possible values for State are

® pending — Job objects that have not yet been submitted to a job
queue are in the pending state.

® queued — Job objects that have been submitted to a job queue but
have not yet started to run are in the queued state.

® running — Job objects that are currently in the process of running
are in the running state.

e finished — Job objects that have completed running all their tasks
are in the finished state.

e failed — Job objects when using a third-party scheduler and the job
could not run because of unexpected or missing information.

e destroyed — Job objects whose data has been permanently removed
from the data location or job manager.

® unavailable — Communication cannot be established with the job
manager.

Job Manager

For a job manager, possible values for State are

® running — A started job queue will execute jobs normally.
® paused — The job queue is paused.
® unavailable — Communication cannot be established with the job

manager.

When a job manager first starts up, the default value for State is
running.

State

Worker

For a worker, possible values for State are

® running — A started job queue will execute jobs normally.

® unavailable — Communication cannot be established with the
worker.

Examples Create a job manager object representing a job manager service, and
create a job object; then examine each object’s State property.

jm = findResource('scheduler', 'type', 'jobmanager’',
‘name ', 'MyJobManager', 'LookupURL', 'dJobMgrHost');

get(jm, 'State')
ans =

running
j = createdob(jm);
get(j, 'State')
ans =

pending

See Also Functions

createdob, createTask, findResource, pause, resume, submit

15-91

SubmitArguments

Purpose

Description

Characteristics

Values

15-92

Specify additional arguments to use when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec scheduler

SubmitArguments is simply a string that is passed via the bsub or qsub
command to the LSF, PBS Pro, or TORQUE scheduler at submit time,
or passed to the mpiexec command if using an mpiexec scheduler.

Usage LSF, PBS Pro, TORQUE, or mpiexec scheduler
object

Read-only Never

Data type String

LSF Scheduler

Useful SubmitArguments values might be ' -m "machine1 machine2"'
to indicate that your scheduler should use only the named machines to
run the job, or '-R "type==LINUX64"' to use only workers running
on 64-bit machines with a Linux operating system. Note that by
default the scheduler will attempt to run your job on only nodes with
an architecture similar to the local machine’s unless you specify '-R
"type==any""'.

PBS Pro or TORQUE Scheduler

A value of ' -q queuename' submits the job to the queue specified by
queuename. A value of ' -p 10' runs the job at priority level 10.

mpiexec Scheduler

The following SubmitArguments values might be useful when using an
mpiexec scheduler. They can be combined to form a single string when
separated by spaces.

Value Description
-phrase MATLAB Use MATLAB as passphrase to connect with
smpd.

SubmitArguments

Value Description

-noprompt Suppress prompting for any user
information.

-localonly Run only on the local computer.

-host <hostname> Run only on the identified host.

-machinefile Run only on the nodes listed in the specified

<filename> file (one hostname per line).

For a complete list, see the command-line help for the mpiexec
command:

mpiexec -help
mpiexec -help2

See Also Functions

submit

Properties

MatlabCommandToRun, MpiexecFileName

15-93

SubmitFcn

Purpose

Description

Characteristics

Values

See Also

15-94

Specify function to run when job submitted to generic scheduler

SubmitFcn identifies the function to run when you submit a job to the
generic scheduler. The function runs in the MATLAB client. This
user-defined submit function provides certain job and task data for
the MATLAB worker, and identifies a corresponding decode function
for the MATLAB worker to run.

For further information, see “MATLAB Client Submit Function” on
page 8-32.

Usage Generic scheduler object
Read-only Never
Data type String

SubmitFcn can be set to any valid MATLAB callback value that uses
the user-defined submit function.

For a description of the user-defined submit function, how it is used,
and its relationship to the worker decode function, see “Using the
Generic Scheduler Interface” on page 8-31.

Functions
submit

Properties
MatlabCommandToRun

SubmitTime

Purpose When job was submitted to queue

Description SubmitTime holds a date number specifying the time when a job was
submitted to the job queue, in the format
‘day mon dd hh:mm:ss tz yyyy'

Characteristics ygage Job object
Read-only Always
Data type String
Values SubmitTime is assigned the job manager’s system time when the job is
submitted.
Examples Create and submit a job, then get its SubmitTime.

jm = findResource('scheduler', 'type', 'jobmanager', .
"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');

j = createdob(jm);

createTask(j, @rand, 1, {12,12});

submit(j)

get(j, 'SubmitTime')

ans =

Wed Jun 30 11:33:21 EDT 2004

See Also Functions

submit

Properties

CreateTime, FinishTime, StartTime

15-95

Tag

Purpose

Description

Characteristics

Values

Examples

See Also

15-96

Specify label to associate with job object

You configure Tag to be a string value that uniquely identifies a job
object.

Tag is particularly useful in programs that would otherwise need to
define the job object as a global variable, or pass the object as an
argument between callback routines.

You can return the job object with the findJob function by specifying
the Tag property value.

Usage Job object
Read-only Never
Data type String

The default value is an empty string.

Suppose you create a job object in the job manager jm.
job1 = createdob(jm);

You can assign job1 a unique label using Tag.
set(job1,'Tag', 'MyFirstdob')

You can identify and access job1 using the findJob function and the
Tag property value.

job_one = findJdob(jm,'Tag', 'MyFirstdob"');

Functions
findJob

Task

Purpose First task contained in MATLAB pool job object

Description The Task property contains the task object for the MATLAB pool
job, which has only this one task. This is the same as the first task
contained in the Tasks property.

Characteristics Usage MATLAB pool job object
Read-only Always
Data type Task object

See Also Functions

createMatlabPooldob, createTask

Properties

Tasks

15-97

Tasks

Purpose Tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job,
whether the tasks are pending, running, or finished. Tasks are always
returned in the order in which they were created.

Read-only Always
Data type Array of task objects
Examples Examine the Tasks property for a job object, and use the resulting array

of objects to set property values.

jm = findResource('scheduler', 'type', 'jobmanager’,
‘name ', 'MyJobManager', 'LookupURL', 'dobMgrHost"');
j = createdob(jm);

createTask(j, ...)
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =

distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for
each task in the job.

15-98

Tasks

See Also Functions

createTask, destroy, findTask

Properties
Jobs

15-99

Timeout

Purpose

Description

Characteristics

Values

Examples

15-100

Specify time limit to complete task or job

Timeout holds a double value specifying the number of seconds to wait
before giving up on a task or job.

The time for timeout begins counting when the task State property
value changes from the Pending to Running, or when the job object
State property value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the
task were stopped with the cancel function, except a different message
is placed in the task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job
were stopped using the cancel function, except all pending and running
tasks are treated as having timed out.

Usage Task object or job object
Read-only While running
Data type Double

The default value for Timeout is large enough so that in practice, tasks
and jobs will never time out. You should set the value of Timeout to the
number of seconds you want to allow for completion of tasks and jobs.

Set a job’s Timeout value to 1 minute.

jm = findResource('scheduler', 'type', 'jobmanager',

"name ', 'MyJobManager', 'LookupURL', 'JobMgrHost');
j = createdob(jm);
set(j, 'Timeout', 60)

Timeout

See Also Functions

submit

Properties

ErrorMessage, State

15-101

Type

Purpose Type of scheduler object
Description Type indicates the type of scheduler object.
Characteristics Usage Scheduler object
Read-only Always
Data type String
Values Type is a string indicating the type of scheduler represented by this
object.

15-102

UserData

Purpose Specify data to associate with object

Description You configure UserData to store data that you want to associate with
an object. The object does not use this data directly, but you can access
it using the get function or dot notation.

UserData is stored in the local MATLAB client session, not in the job
manager, job data location, or worker. So, one MATLAB client session
cannot access the data stored in this property by another MATLAB
client session. Even on the same machine, if you close the client session
where UserData is set for an object, and then access the same object
from a later client session via the job manager or job data location, the
original UserData is not recovered. Likewise, commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data
in the UserData property.

Characteristics Usage Scheduler object, job object, or task object
Read-only Never
Data type Any type

Values The default value 1s an empty vector.

Examples Suppose you create the job object job1.

job1 = createdob(jm);
You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff

15-103

UserData

get(job1, 'UserData')
ans =
a: 1
b: -1.2500

15-104

UserName

Purpose User who created job

Description The UserName property value is a string indicating the login name of
the user who created the job.

Characteristics ygage Job object
Read-only Always
Data type String
Examples Examine a job to see who created it.
get(job1, 'UserName')
ans =
jsmith

15-105

UseSOAJobSubmission

Purpose

Description

Characteristics

Values

15-106

Allow service-oriented architecture (SOA) submission on HPC Server
2008 cluster

The value you assign to the UseSOAJobSubmission property specifies
whether to allow SOA job submissions for the scheduler object
representing a Microsoft Windows HPC Server 2008 cluster. If you
enable SOA submission, MATLAB worker sessions can each evaluate

multiple tasks in succession. If you disable SOA submission, a separate
MATLAB worker starts for each task.

Ensure that HPC Server 2008 is correctly configured to
run SOA jobs on MATLAB Distributed Computing Server.
For more details, see the online installation instructions at
http://www.mathworks.com/distconfig.

Note The MATLAB client from which you submit SOA jobs to the HPC
Server 2008 scheduler must remain open for the duration of these jobs.
Closing the MATLAB client session while SOA jobs are in the pending,
queued, or running state causes the scheduler to cancel these jobs.

Usage Windows HPC Server scheduler object
Read-only Never
Data type Logical

UseSOAJobSubmission is false by default. SOA job submission works
only for HPC Server 2008 clusters, and your scheduler ClusterVersion
property must be set to 'HPCServer2008'. If ClusterVersion is set to
any other value, and you attempt to set UseSOAJobSubmission to true,
an error is generated and the property value remains false.

http://www.mathworks.com/distconfig

UseSOAJobSubmission

Remarks If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission

Examples Set the scheduler to allow SOA job submissions.

s = findResource('scheduler', 'type', 'hpcserver');

s.UseSOAJobSubmission = true;

See Also Properties

ClusterVersion, JobDescriptionFile, JobTemplate,

15-107

Worker

Purpose Worker session that performed task

Description The Worker property value is an object representing the worker session
that evaluated the task.

Characteristics ygage Task object

Read-only Always

Data type Worker object
Values Before a task is evaluated, its Worker property value is an empty vector.
Examples Find out which worker evaluated a particular task.

submit (job1)
waitForState(job1, 'finished"')
t1 = findTask(job1,'ID',1)
t1.Worker.Name

ans =

node55_worker1

See Also Properties

Tasks

15-108

WorkerMachineOsType

Purpose

Description

Characteristics

Values

See Also

Specify operating system of nodes on which mpiexec scheduler will start
labs

WorkerMachineOsType specifies the operating system of the nodes that
an mpiexec scheduler will start labs on for the running of a parallel job.

Usage mpiexec scheduler object
Read-only Never
Data type String

The only value the property can have is 'pc' or 'unix'. The nodes of
the labs running an mpiexec job must all be the same platform. The
only heterogeneous mixing allowed in the cluster for the same mpiexec
job is Intel® Macintosh-based systems with 32-bit Linux-based systems.

Properties

Computer, HostAddress, HostName

15-109

WorkerMachineOsType

15-110

Glossary

CHECKPOINTBASE
The name of the parameter in the mdce_def file that defines the location
of the job manager and worker checkpoint directories.

checkpoint directory
Location where job manager checkpoint information and worker
checkpoint information is stored.

client
The MATLAB session that defines and submits the job. This is the
MATLAB session in which the programmer usually develops and
prototypes applications. Also known as the MATLAB client.

client computer
The computer running the MATLAB client.

cluster
A collection of computers that are connected via a network and intended
for a common purpose.

coarse-grained application
An application for which run time is significantly greater than
the communication time needed to start and stop the program.
Coarse-grained distributed applications are also called embarrassingly
parallel applications.

codistributed array
An array partitioned into segments, with each segment residing in the
workspace of a different lab.

Composite
An object in a MATLAB client session that provides access to data
values stored on the labs in a MATLAB pool, such as the values of
variables that are assigned inside an spmd statement.

computer
A system with one or more processors.

Glossary-1

Glossary

distributed application
The same application that runs independently on several nodes,
possibly with different input parameters. There is no communication,
shared data, or synchronization points between the nodes. Distributed
applications can be either coarse-grained or fine-grained.

distributed computing
Computing with distributed applications, running the application on
several nodes simultaneously.

distributed computing demos
Demonstration programs that use Parallel Computing Toolbox software,
as opposed to sequential demos.

DNS
Domain Name System. A system that translates Internet domain
names into IP addresses.

dynamic licensing
The ability of a MATLAB worker or lab to employ all the functionality
you are licensed for in the MATLAB client, while checking out only
an engine license. When a job is created in the MATLAB client
with Parallel Computing Toolbox software, the products for which
the client is licensed will be available for all workers or labs that
evaluate tasks for that job. This allows you to run any code on the
cluster that you are licensed for on your MATLAB client, without
requiring extra licenses for the worker beyond MATLAB Distributed
Computing Server software. For a list of products that are not
eligible for use with Parallel Computing Toolbox software, see
http://www.mathworks.com/products/ineligible programs/.

fine-grained application
An application for which run time is significantly less than the
communication time needed to start and stop the program. Compare to
coarse-grained applications.

head node
Usually, the node of the cluster designated for running the job manager
and license manager. It is often useful to run all the nonworker related
processes on a single machine.

Glossary-2

http://www.mathworks.com/products/ineligible_programs/

Glossary

heterogeneous cluster
A cluster that is not homogeneous.

homogeneous cluster
A cluster of identical machines, in terms of both hardware and software.

job
The complete large-scale operation to perform in MATLAB, composed
of a set of tasks.

job manager
The MathWorks process that queues jobs and assigns tasks to workers.
A third-party process that performs this function is called a scheduler.
The general term "scheduler" can also refer to a job manager.

job manager checkpoint information
Snapshot of information necessary for the job manager to recover from
a system crash or reboot.

job manager database
The database that the job manager uses to store the information about
its jobs and tasks.

job manager lookup process
The process that allows clients, workers, and job managers to find each
other. It starts automatically when the job manager starts.

lab
When workers start, they work independently by default. They can
then connect to each other and work together as peers, and are then
referred to as labs.

LOGDIR

The name of the parameter in the mdce_def file that defines the
directory where logs are stored.

MathWorks job manager
See job manager.

Glossary-3

Glossary

Glossary-4

MATLAB client
See client.

MATLAB pool
A collection of labs that are reserved by the client for execution of
parfor-loops or spmd statements. See also lab.

MATLAB worker
See worker.

mdce
The service that has to run on all machines before they can run a job
manager or worker. This is the engine foundation process, making sure
that the job manager and worker processes that it controls are always
running.

Note that the program and service name is all lowercase letters.

mdce_def file
The file that defines all the defaults for the mdce processes by allowing
you to set preferences or definitions in the form of parameter values.

MPI
Message Passing Interface, the means by which labs communicate with
each other while running tasks in the same job.

node
A computer that is part of a cluster.

parallel application
The same application that runs on several labs simultaneously, with
communication, shared data, or synchronization points between the
labs.

private array
An array which resides in the workspaces of one or more, but perhaps
not all labs. There might or might not be a relationship between the
values of these arrays among the labs.

Glossary

random port
A random unprivileged TCP port, i.e., a random TCP port above 1024.

register a worker
The action that happens when both worker and job manager are started
and the worker contacts job manager.

replicated array
An array which resides in the workspaces of all labs, and whose size and
content are identical on all labs.

scheduler
The process, either third-party or the MathWorks job manager, that
queues jobs and assigns tasks to workers.

spmd (single program multiple data)
A Dblock of code that executes simultaneously on multiple labs in
a MATLAB pool. Each lab can operate on a different data set or
different portion of distributed data, and can communicate with other
participating labs while performing the parallel computations.

task
One segment of a job to be evaluated by a worker.

variant array
An array which resides in the workspaces of all labs, but whose content
differs on these labs.

worker
The MATLAB session that performs the task computations. Also known
as the MATLAB worker or worker process.

worker checkpoint information
Files required by the worker during the execution of tasks.

Glossary-5

Glossary

Glossary-6

A

arrays

codistributed 5-4

local 5-11

private 5-4

replicated 5-2

types of 5-2

variant 5-3
AttemptedNumberOfRetries property 15-2

batch function 13-2
BlockSize property 15-3
BusyWorkers property 15-4

C

cancel function 13-5
CanceldJobFcn property 15-5
CancelTaskFcn property 15-6
CaptureCommandWindowOutput property 15-7
ccsscheduler object 11-2
clear function 13-7
ClusterMatlabRoot property 15-9
ClusterName property 15-10
ClusterOsType property 15-11
ClusterSize property 15-12
ClusterVersion property 15-13
codistributed arrays

constructor functions 5-10

creating 5-7

defined 5-4

indexing 5-15

working with 5-5
codistributed function 13-8
codistributed object 11-4
codistributed.build function 13-10
codistributed.cell function 13-12
codistributed.colon function 13-14

codistributed.eye function 13-16
codistributed.false function 13-18
codistributed. Inf function 13-20
codistributed.NaN function 13-22
codistributed.ones function 13-24
codistributed.rand function 13-26
codistributed.randn function 13-28
codistributed.spalloc function 13-30
codistributed.speye function 13-32
codistributed.sprand function 13-34
codistributed.sprandn function 13-36
codistributed. true function 13-38
codistributed.zeros function 13-40
codistributor function 13-42
codistributorid function 13-44
codistributorid object 11-6
codistributorid.defaultPartition

function 13-47
codistributor2dbc function 13-48
codistributor2dbc object 11-7
codistributor2dbc.defaultBlockSize

property 15-14
codistributor2dbc.defaultLabGrid

function 13-50
CommandWindowOutput property 15-15
Composite

getting started 1-10

outside spmd 3-10
Composite function 13-51
Composite object 11-8
Computer property 15-17
Cconfiguration property 15-18
configurations 6-16

importing and exporting 6-22

using in application 6-25

validating 6-23

with MATLAB Compiler 6-23
createdob function 13-52
createMatlabPoolJob function 13-54
createParalleldob function 13-56

Index-1

Index

createTask function 13-59 E
CreateTime property 15-20
current working directory
MATLAB worker 6-28
CurrentJob property 15-21
CurrentTask property 15-22

EnvironmentSetMethod property 15-28
Error property 15-29
ErrorIdentifier property 15-30
ErrorMessage property 15-31

exist function 13-89

D F
DatalLocation property 15-23
defaultParallelConfig function 13-62
demote function 13-64

destroy function 13-66

DestroydJobFcn property 15-25
DestroyTaskFcn property 15-26
dfeval function 13-67

dfevalasync function 13-71

diary function 13-73

Dimension property 15-27
distributed function 13-74
distributed object 11-10

FailedAttemptInformation property 15-32
FileDependencies property 15-33
files

sharing 8-13

using an LSF scheduler 8-26

findJob function 13-90
findResource function 13-92
findTask function 13-96
FinishedFcn property 15-35
FinishTime property 15-37
for loop

distributed 13-98

distributed.cell function 13-75 Function property 15-39
distributed.eye function 13-76 functions
distributed.false function 13-77 batch 13-2
distributed.Inf function 13-78 cancel 13-5
distributed.NaN function 13-79 clear 13-7
distributed.ones function 13-80 codistributed 13-8
distributed.rand function 13-81 codistributed.build 138-10
distributed.randn function 13-82 codistributed.cell 13-12
distributed.spalloc function 13-83 codistributed.colon 13-14
distributed.speye function 13-84 codistributed.eye 13-16
distributed.sprand function 13-85 codistributed.false 13-18
distributed.sprandn function 13-86 codistributed.Inf 13-20
distributed.true function 13-87 codistributed.NaN 13-22
distributed.zeros function 13-88 codistributed.ones 13-24
drange operator codistributed.rand 13-26
for loop 13-98 codistributed.randn 13-28
codistributed.spalloc 13-30
codistributed.speye 13-32
codistributed.sprand 13-34

Index-2

Index

codistributed.sprandn 13-36
codistributed.true 13-38
codistributed.zeros 13-40
codistributor 13-42

codistributorid 13-44
codistributorid.defaultPartition 13-47
codistributor2dbc 13-48
codistributor2dbc.defaultLabGrid 13-50
Composite 13-51

createdob 13-52

createMatlabPoolJob 13-54
createParalleldJob 13-56

createTask 13-59

defaultParallelConfig 13-62

demote 13-64

destroy 13-66

dfeval 13-67

dfevalasync 13-71

diary 13-73

distributed 13-74

distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
distributed.
exist 13-89

cell 13-75
eye 13-76
false 13-77
Inf 13-78

NaN 13-79
ones 13-80
rand 13-81
randn 13-82
spalloc 13-83
speye 13-84
sprand 13-85
sprandn 13-86
true 13-87
zeros 13-88

findJob 13-90
findResource 13-92
findTask 13-96
for

distributed 13-98

drange 13-98
gather 13-100
gcat 13-102
get 13-103
getAllOutputArguments 13-105
getCodistributor 13-107
getCurrentdob 13-109
getCurrentJobmanager 13-110
getCurrentTask 13-111
getCurrentWorker 13-112
getDebuglLog 13-113
getFileDependencyDir 13-115
getdJobSchedulerData 13-116
getLocalPart 13-117
globalIndices 13-118
gop 13-120
gplus 13-122
help 13-123
inspect 13-124
isa 13-126
iscodistributed 13-127
isComplete 13-128
isdistributed 13-129
isreplicated 13-130
jobStartup 13-131
labBarrier 13-132
labBroadcast 13-133
labindex 13-135
labProbe 13-136
labReceive 13-137
labSend 13-139
labSendReceive 13-140
length 13-143
load 13-144
matlabpool 13-146
methods 13-150
mpiLibConf 13-152
mpiprofile 13-154
mpiSettings 13-159
numlabs 13-161

Index-3

parfor 13-162

pause 13-166
pctconfig 13-167
pctRunOnAll 13-169
pload 13-170

pmode 13-172
promote 13-175
psave 13-177
redistribute 13-179
resume 13-180

set 13-181
setJobSchedulerData 13-184
setupForParallelExecution 13-185
size 13-187

sparse 13-188

spmd 13-190

submit 13-192
subsasgn 13-193
subsref 13-194
taskFinish 13-195
taskStartup 13-196
wait 13-197
waitForState 13-199

G

gather function 13-100
gcat function 13-102
generic scheduler

distributed jobs 8-31

parallel jobs 9-8
genericscheduler object 11-12
get function 13-103
getAllOutputArguments function 13-105
getCodistributor function 13-107
getCurrentJob function 13-109
getCurrentJobmanager function 13-110
getCurrentTask function 13-111
getCurrentWorker function 13-112
getDebugLogp function 13-113

Index-4

getFileDependencyDir function 13-115
getJobSchedulerData function 13-116
GetJobStateFcn property 15-40
getLocalPart function 13-117
globalIndices function 13-118

gop function 13-120

gplus function 13-122

H

HasSharedFilesystem property 15-41
help

command-line 6-10

help function 13-123
HostAddress property 15-42
HostName property 15-43

ID property 15-44

IdleWorkers property 15-46
InputArguments property 15-47
inspect function 13-124

isa function 13-126
iscodistributed function 13-127
isComplete function 13-128
isdistributed function 13-129
isreplicated function 13-130

J
job

creating
example 8-10

creating on generic scheduler
example 8-42

creating on LSF or HPC Server scheduler
example 8-23

life cycle 6-14

local scheduler 8-3

submitting to generic scheduler queue 8-44

Index

submitting to local scheduler 8-5
submitting to LSF or HPC Server scheduler
queue 8-25
submitting to queue 8-12
job manager
finding
example 8-3 8-8
job object 11-15
JobData property 15-48
JobDescriptionFile property 15-49
jobmanager object 11-18
JobManager property 15-50
Jobs property 15-51
jobStartup function 13-131
JobTemplate property 15-53

L

labBarrier function 13-132
labBroadcast function 13-133
LabGrid property 15-54
labindex function 13-135
labProbe function 13-136
labReceive function 13-137
labSend function 13-139
labSendReceive function 13-140
length function 13-143

load function 13-144
localscheduler object 11-21
LSF scheduler 8-19
lsfscheduler object 11-23

M

MasterName property 15-55
MatlabCommandToRun property 15-56
matlabpool

parfor 2-3

spmd 3-3
matlabpool function 13-146

matlabpooljob object 11-25
MaximumNumberOfRetries property 15-57
MaximumNumberOfWorkers property 15-58
methods function 13-150
MinimumNumberOfWorkers property 15-59
mpiexec object 11-28

MpiexecFileName property 15-60
mpiLibConf function 13-152

mpiprofile function 13-154
mpiSettings function 13-159

Name property 15-61
NumberOfBusyWorkers property 15-63
NumberOfIdleWorkers property 15-64
NumberOfOutputArguments property 15-65
numlabs function 13-161

o

objects 6-7
ccsscheduler 11-2
codistributed 11-4
codistributorid 11-6
codistributor2dbc 11-7
Composite 11-8
distributed 11-10
genericscheduler 11-12
job 11-15
jobmanager 11-18
localscheduler 11-21
1sfscheduler 11-23
matlabpooljob 11-25
mpiexec 11-28
paralleljob 11-30
pbsproscheduler 11-33
saving or sending 6-28
simplejob 11-35
simplematlabpooljob 11-38

Index-5

Index

simpleparalleljob 11-41
simpletask 11-44
task 11-46
torquescheduler 11-49
worker 11-51
Orientation property 15-66
OutputArguments property 15-67

P

parallel for-loops. See parfor-loops
parallel jobs 9-2
supported schedulers 9-4
paralleljob object 11-30
ParallelSubmissionWrapperScript
property 15-69
ParallelSubmitFcn property 15-70
Parent property 15-71
parfor function 13-162
parfor-loops 2-1
break 2-9
broadcast variables 2-17
classification of variables 2-12
compared to for-loops 2-5
error handling 2-7
for-drange 2-11
global variables 2-10
improving performance 2-26
limitations 2-8
local vs. cluster workers 2-10
loop variable 2-13
MATLAB path 2-7
nested functions 2-9
nested loops 2-9
nesting with spmd 2-9
nondistributable functions 2-9
persistent variables 2-10
programming considerations 2-7
reduction assignments 2-18
reduction assignments, associativity 2-21

Index-6

reduction assignments, commutativity 2-22

reduction assignments, overloading 2-23
reduction variables 2-17
release compatibility 2-11
return 2-9
sliced variables 2-14
temporary variables 2-24
transparency 2-8
Partition property 15-72
PathDependencies property 15-73
pause function 13-166
PBS Pro scheduler 8-19
pbsproscheduler object 11-33
pctconfig function 13-167
pctRunOnAll function 13-169
platforms
supported 6-7
pload function 13-170
pmode function 13-172
PreviousdJob property 15-75
PreviousTask property 15-76
programming
basic session 8-8
guidelines 6-12
local scheduler 8-2
tips 6-28
promote function 13-175
properties
AttemptedNumberOfRetries 15-2
BlockSize 15-3
BusyWorkers 15-4
CanceldobFcn 15-5
CancelTaskFcn 15-6
CaptureCommandWindowOutput 15-7
ClusterMatlabRoot 15-9
ClusterName 15-10
ClusterOsType 15-11
ClusterSize 15-12
ClusterVersion 15-13

codistributor2dbc.defaultBlockSize 15-14

Index

CommandWindowOutput 15-15
Computer 15-17
Configuration 15-18
CreateTime 15-20

Currentdob 15-21

CurrentTask 15-22
DataLocation 15-23
DestroydJobFcn 15-25
DestroyTaskFcn 15-26
Dimension 15-27
EnvironmentSetMethod 15-28
Error 15-29

ErrorIdentifier 15-30
ErrorMessage 15-31
FailedAttemptInformation 15-32
FileDependencies 15-33
FinishedFcn 15-35
FinishTime 15-37

Function 15-39
GetJobStateFcn 15-40
HasSharedFilesystem 15-41
HostAddress 15-42

HostName 15-43

ID 15-44

IdleWorkers 15-46
InputArguments 15-47
JobData 15-48
JobDescriptionFile 15-49
JobManager 15-50

Jobs 15-51

JobTemplate 15-53

LabGrid 15-54

MasterName 15-55
MatlabCommandToRun 15-56
MaximumNumberOfRetries 15-57
MaximumNumberOfWorkers 15-58
MinimumNumberOfWorkers 15-59
MpiexecFileName 15-60

Name 15-61
NumberOfBusyWorkers 15-63

NumberOfIdleWorkers 15-64
NumberOfOutputArguments 15-65
Orientation 15-66
OutputArguments 15-67
ParallelSubmissionWrapperScript 15-69
ParallelSubmitFcn 15-70
Parent 15-71

Partition 15-72
PathDependencies 15-73
PreviousdJob 15-75
PreviousTask 15-76
QueuedFcn 15-77

RcpCommand 15-79
ResourceTemplate 15-80
RestartWorker 15-81
RshCommand 15-82
RunningFcn 15-83
SchedulerHostname 15-85
ServerName 15-86
StartTime 15-87

State 15-89
SubmitArguments 15-92
SubmitFcn 15-94
SubmitTime 15-95

Tag 15-96

Task 15-97

Tasks 15-98

Timeout 15-100

Type 15-102

UserData 15-103

UserName 15-105
UseSOAJobSubmission 15-106
Worker 15-108
WorkerMachineOsType 15-109

psave function 13-177

QueuedFcn property 15-77

Index-7

Index

RcpCommand property 15-79
redistribute function 13-179
ResourceTemplate property 15-80
RestartWorker property 15-81
results
local scheduler 8-5
retrieving 8-12
retrieving from job on generic scheduler 8-44
retrieving from job on LSF scheduler 8-25
resume function 13-180
RshCommand property 15-82
RunningFcn property 15-83

S

saving
objects 6-28
scheduler
generic interface
distributed jobs 8-31
parallel jobs 9-8
HPC Server 8-19
finding, example 8-21
LSF 8-19
finding, example 8-20
PBS Pro 8-19
TORQUE 8-19
SchedulerHostname property 15-85
ServerName property 15-86
set function 13-181
setJobSchedulerData function 13-184
setupForParallelExecution function 13-185
simplejob object 11-35
simplematlabpooljob object 11-38
simpleparalleljob object 11-41
simpletask object 11-44
single program multiple data. See spmd
size function 13-187
sparse function 13-188

Index-8

spmd 3-1
break 3-17
error handling 3-15
getting started 1-10
global variables 3-17
limitations 3-15
MATLAB path 3-15
nested functions 3-16
nested spmd 3-17
nesting with parfor 3-17
persistent variables 3-17

programming considerations 3-15

return 3-17

transparency 3-15
spmd function 13-190
StartTime property 15-87
State property 15-89
submit function 13-192
SubmitArguments property 15-92
SubmitFcn property 15-94
SubmitTime property 15-95
subsasgn function 13-193
subsref function 13-194

T

Tag property 15-96
task
creating
example 8-11
creating on generic scheduler
example 8-43
creating on LSF scheduler
example 8-24
local scheduler 8-5
task object 11-46
Task property 15-97
taskFinish function 13-195
Tasks property 15-98
taskStartup function 13-196

Index

Timeout property 15-100 UserName property 15-105

TORQUE scheduler 8-19 UseSOAJobSubmission property 15-106
torquescheduler object 11-49

troubleshooting w

programs 6-42

Type property 15-102 wait function 13-197

waitForState function 13-199
Windows HPC Server scheduler 8-19

U worker object 11-51
user configurations 6-16 Worker property 15-108
UserData property 15-103 WorkerMachineOsType property 15-109

Index-9

	toc
	Getting Started
	Product Overview
	Typical Use Cases
	Parallel for-Loops (parfor)
	Batch Jobs
	Large Data Sets

	Introduction to Parallel Solutions
	Interactively Running a Loop in Parallel
	Running a Batch Job
	Running a Batch Parallel Loop
	Using Distributed Arrays, spmd, and Composites
	Distributed Arrays
	Single Program Multiple Data
	Composites

	Determining Product Installation and Versions

	Parallel for-Loops (parfor)
	Getting Started with parfor
	Introduction
	When to Use parfor
	Setting up MATLAB Resources Using matlabpool
	Creating a parfor-Loop
	Differences Between for-Loops and parfor-Loops
	Reduction Assignments

	Programming Considerations
	MATLAB Path
	Error Handling
	Limitations
	Unambiguous Variable Names
	Transparency
	Nondistributable Functions
	Nested Functions
	Nested parfor-Loops
	Nested spmd Statements
	Break and Return Statements
	Global and Persistent Variables

	Performance Considerations
	Slicing Arrays
	Local vs. Cluster Workers

	Compatibility with Earlier Versions of MATLAB Software

	Advanced Topics
	About Programming Notes
	Classification of Variables
	Overview
	Loop Variable
	Sliced Variables
	Broadcast Variables
	Reduction Variables
	Temporary Variables

	Improving Performance
	Where to Create Arrays
	Optimizing on Local vs. Cluster Workers

	Single Program Multiple Data (spmd)
	Using spmd Constructs
	Introduction
	When to Use spmd
	Setting Up MATLAB Resources Using matlabpool
	Defining an spmd Statement

	Accessing Data with Composites
	Introduction
	Creating Composites in spmd Statements
	Variable Persistence and Sequences of spmd
	Creating Composites Outside spmd Statements

	Distributing Arrays
	Distributed Versus Codistributed Arrays
	Creating Distributed Arrays
	Creating Codistributed Arrays

	Programming Considerations
	MATLAB Path
	Error Handling
	Limitations
	Transparency
	Nested Functions
	Anonymous Functions
	Nested spmd Statements
	Nested parfor-Loops
	Break and Return Statements
	Global and Persistent Variables

	Interactive Parallel Computation with pmode
	Introduction
	Getting Started with pmode
	Parallel Command Window
	Running pmode on a Cluster
	Plotting in pmode
	Limitations and Unexpected Results
	Using Graphics in pmode
	Displaying a GUI
	Using Simulink Software

	Troubleshooting
	Connectivity Testing
	Hostname Resolution
	Socket Connections

	Math with Codistributed Arrays
	Array Types
	Introduction
	Nondistributed Arrays
	Replicated Arrays
	Variant Arrays
	Private Arrays

	Codistributed Arrays

	Working with Codistributed Arrays
	How MATLAB Software Distributes Arrays
	How MATLAB Displays a Codistributed Array
	How Much Is Distributed to Each Lab
	Distribution of Other Data Types

	Creating a Codistributed Array
	Partitioning a Larger Array
	Building from Smaller Arrays
	Using MATLAB Constructor Functions

	Local Arrays
	Creating Local Arrays from a Codistributed Array
	Creating a Codistributed from Local Arrays

	Obtaining Information About the Array
	Determining Whether an Array Is Codistributed
	Determining the Dimension of Distribution
	Other Array Functions

	Changing the Dimension of Distribution
	Restoring the Full Array
	Indexing into a Codistributed Array
	Example: Find a Particular Element in a Codistributed Array

	2-Dimensional Distribution

	Using a for-Loop Over a Distributed Range (for-drange)
	Parallelizing a for-Loop
	Codistributed Arrays in a for-drange Loop

	Using MATLAB Functions on Codistributed Arrays

	Programming Overview
	Product Introduction
	Overview
	Toolbox and Server Components
	Job Managers, Workers, and Clients
	Local Scheduler
	Third-Party Schedulers
	Components on Mixed Platforms or Heterogeneous Clusters
	mdce Service
	Components Represented in the Client

	Using Parallel Computing Toolbox Software
	Example: Evaluating a Basic Function
	Example: Programming a Basic Job with a Local Scheduler
	Getting Help
	Command-Line Help
	Help Browser

	Program Development Guidelines
	Life Cycle of a Job
	Programming with User Configurations
	Defining Configurations
	Example — Creating and Modifying User Configurations

	Exporting and Importing Configurations
	Exporting Configurations for MATLAB Compiler

	Validating Configurations
	Applying Configurations in Client Code
	Selecting a Default Configuration
	Finding Schedulers
	Creating Jobs
	Setting Job and Task Properties

	Programming Tips and Notes
	Saving or Sending Objects
	Current Working Directory of a MATLAB Worker
	Using clear functions
	Running Tasks That Call Simulink Software
	Using the pause Function
	Transmitting Large Amounts of Data
	Interrupting a Job
	Speeding Up a Job

	Using the Parallel Profiler
	Introduction
	Collecting Parallel Profile Data
	Viewing Parallel Profile Data

	Troubleshooting and Debugging
	Object Data Size Limitations
	File Access and Permissions
	Ensuring That Workers on Windows Operating Systems Can Access Fi
	Task Function Is Unavailable
	Load and Save Errors
	Tasks or Jobs Remain in Queued State

	No Results or Failed Job
	Task Errors
	Debug Logs

	Connection Problems Between the Client and Job Manager
	Client Cannot See the Job Manager
	Job Manager Cannot See the Client

	Evaluating Functions in a Cluster
	Evaluating Functions Synchronously
	Scope of dfeval
	Arguments of dfeval
	Example — Using dfeval

	Evaluating Functions Asynchronously

	Programming Distributed Jobs
	Using a Local Scheduler
	Creating and Running Jobs with a Local Scheduler
	Create a Scheduler Object
	Create a Job
	Create Tasks
	Submit a Job to the Scheduler
	Retrieve the Job’s Results

	Local Scheduler Behavior

	Using a Job Manager
	Creating and Running Jobs with a Job Manager
	Find a Job Manager
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job’s Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects in the Job Manager
	What Happens When the Client Session Ends
	Recovering Objects
	Resetting Callback Properties
	Permanently Removing Objects

	Using a Fully Supported Third-Party Scheduler
	Creating and Running Jobs
	Find an LSF, PBS Pro, or TORQUE Scheduler
	Find a Windows HPC Server Scheduler
	Create a Job
	Create Tasks
	Submit a Job to the Job Queue
	Retrieve the Job’s Results

	Sharing Code
	Directly Accessing Files
	Passing Data Between Sessions
	Passing M-Code for Startup and Finish

	Managing Objects
	What Happens When the Client Session Ends?
	Recovering Objects
	Destroying Jobs

	Using the Generic Scheduler Interface
	Overview
	MATLAB Client Submit Function
	Identifying the Decode Function
	Passing Job and Task Data
	Defining Scheduler Command to Run MATLAB Workers

	Example — Writing the Submit Function
	MATLAB Worker Decode Function
	Identifying File Name and Location
	Reading the Job and Task Information

	Example — Writing the Decode Function
	Example — Programming and Running a Job in the Client
	1. Create a Scheduler Object
	2. Create a Job
	3. Create Tasks
	4. Submit a Job to the Job Queue
	5. Retrieve the Job’s Results

	Supplied Submit and Decode Functions
	Managing Jobs
	Saving Job Scheduler Data
	Defining Scheduler Commands in User Functions
	Destroying or Canceling a Running Job
	Getting State Information About a Job or Task

	Summary

	Programming Parallel Jobs
	Introduction
	Using a Supported Scheduler
	Schedulers and Conditions
	Coding the Task Function
	Coding in the Client

	Using the Generic Scheduler Interface
	Introduction
	Coding in the Client
	Configuring the Scheduler Object
	Supplied Submit and Decode Functions

	Further Notes on Parallel Jobs
	Number of Tasks in a Parallel Job
	Avoiding Deadlock and Other Dependency Errors

	Object Reference
	Data Objects
	Scheduler Objects
	Job Objects
	Task Objects
	Worker Objects

	Objects — Alphabetical List
	Function Reference
	Parallel Code Execution
	Parallel Code on a MATLAB Pool
	Configuration, Input, and Output
	Interactive Functions

	Codistributed Arrays
	Toolbox Functions
	Overloaded MATLAB Functions

	Job and Task Programming
	Job Creation
	Job Management
	Task Execution Information
	Object Control

	Interlab Communication Within a Parallel Job

	Functions — Alphabetical List
	Examples

	Property Reference
	Job Manager Properties
	Scheduler Properties
	Job Properties
	Task Properties
	Worker Properties

	Properties — Alphabetical List
	Glossary
	Index

